Skip to main content
Log in

Intraoperative biologische Augmentation am Meniskus

Intraoperative biological augmentation techniques for meniscus surgery

  • Leitthema
  • Published:
Arthroskopie Aims and scope

Zusammenfassung

Hintergrund

Die operative Therapie von Meniskusläsionen muss nicht nur die biomechanischen, sondern auch die spezifischen biologischen Gesetzmäßigkeiten der Meniskusheilung berücksichtigen. Trotz wesentlicher Fortschritte bei den Refixations- und Nahttechniken von Meniskusläsionen mit entsprechend biomechanisch ausgereiften, minimal-invasiven Systemen ist die Versagensrate bei meniskuserhaltenden Eingriffen relevant, was auf die limitierte Vaskularisierung der zentralen Meniskuszonen zurückzuführen ist.

Methoden

Verschiedene biologische Augmentationstechniken sind beschrieben, um das Heilungspotenzial bei operativ versorgten Meniskusläsionen zu verbessern. Ungerichtete intraoperative biologische Augmentationstechniken werden bereits seit Jahren im klinischen Alltag eingesetzt, allerdings mit bisher geringem Evidenzlevel. Diese umfassen das intraläsionale bzw. parasynoviale Raspeln, die Trepanation bzw. das Needling, die Mikrofrakturierung, die Verwendung von Fibrinclots und in den letzten Jahren auch die Anwendung von thrombozytenreichen Konzentraten. Diese Maßnahmen sollen biologische, den Heilungsprozess aktivierende Substanzen liefern.

Schlussfolgerung

Neuere biologische Augmentationsverfahren, wie der gezielte intraoperative Einsatz von Wachstumsfaktoren und/oder zellbasierter Therapien von mesenchymalen Stammzellen, rücken zunehmend in den wissenschaftlichen Fokus. Die Komplexität der Heilungsvorgänge an den Menisken müssen jedoch erst im Detail erforscht und verstanden werden, bevor ein erfolgreicher Transfer in das klinische Setting gelingt.

Abstract

Background

The surgical treatment of meniscal lesions has to consider not only the biomechanical but also the specific biological principles of meniscus healing. Despite essential progress with respect to refixation and suture techniques for meniscal lesions, including biomechanically sophisticated minimally invasive systems, the failure rate of meniscus-preserving surgery is still clinically relevant. A limited vascularization of the central meniscal zones seems to be the most important factor.

Methods

Various biological augmentation techniques have been developed for enhancement of the healing ability following surgically treated meniscal lesions. Non-directive intraoperative biological augmentation techniques have already been established in the clinical setting for many years; however, the evidence level of these procedures is still low. Intralesional and parasynovial rasping, trephination, needling, microfracturing, use of fibrin clots and recently the application of platelet-rich concentrates are all included under these intraoperative biological augmentation techniques.

Conclusion

Overall, these interventions can provide biologically active substrates for improved healing. Novel biological augmentation procedures, e.g. specific intraoperative use of growth factors and/or cell-based therapies of mesenchymal stem cells, are under scientific investigation. However, the complexity of the healing processes in the menisci must be studied and understood in detail before a successful transfer into the clinical setting can be realized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Andersson-Molina H, Karlsson H, Rockborn P (2002) Arthroscopic partial and total meniscectomy: a long-term follow-up study with matched controls. Arthroscopy 18:183–189

    Article  PubMed  Google Scholar 

  2. Anz AW, Rodkey WG (2012) Biological enhancement of meniscus repair and replacement. Sports Med Arthrosc 20:115–120

    Article  PubMed  Google Scholar 

  3. Arnoczky SP, Warren RF (1982) Microvasculature of the human meniscus. Am J Sports Med 10:90–95

    Article  PubMed  CAS  Google Scholar 

  4. Arnoczky SP, Warren RF (1983) The microvasculature of the meniscus and its response to injury. An experimental study in the dog. Am J Sports Med 11:131–141

    Article  PubMed  CAS  Google Scholar 

  5. Arnoczky SP, Warren RF, Kaplan N (1985) Meniscal remodeling following partial meniscectomy–an experimental study in the dog. Arthroscopy 1:247–252

    Article  PubMed  CAS  Google Scholar 

  6. Arnoczky SP, Warren RF, Spivak JM (1988) Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J Bone Joint Surg Am 70:1209–1217

    PubMed  CAS  Google Scholar 

  7. Bach BR Jr, Dennis M, Balin J et al (2005) Arthroscopic meniscal repair: analysis of treatment failures. J Knee Surg 18:278–284

    Article  PubMed  Google Scholar 

  8. Bava ED, Barber FA (2011) Platelet-rich plasma products in sports medicine. Phys Sportsmed 39:94–99

    Article  PubMed  Google Scholar 

  9. Becker R, Pufe T, Kulow S et al (2004) Expression of vascular endothelial growth factor during healing of the meniscus in a rabbit model. J Bone Joint Surg Br 86:1082–1087

    Article  PubMed  CAS  Google Scholar 

  10. Beitzel K, Mccarthy MB, Cote MP et al (2012) Rapid isolation of human stem cells (connective progenitor cells) from the distal femur during arthroscopic knee surgery. Arthroscopy 28:74–84

    Article  PubMed  Google Scholar 

  11. Bhargava MM, Attia ET, Murrell GA et al (1999) The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am J Sports Med 27:636–643

    PubMed  CAS  Google Scholar 

  12. Biedert RM (2000) Treatment of intrasubstance meniscal lesions: a randomized prospective study of four different methods. Knee Surg Sports Traumatol Arthrosc 8:104–108

    Article  PubMed  CAS  Google Scholar 

  13. Brucker PU, Von Campe A, Meyer DC et al (2011) Clinical and radiological results 21 years following successful, isolated, open meniscal repair in stable knee joints. Knee 18:396–401

    Article  PubMed  Google Scholar 

  14. Cannon WD Jr, Vittori JM (1992) The incidence of healing in arthroscopic meniscal repairs in anterior cruciate ligament-reconstructed knees versus stable knees. Am J Sports Med 20:176–181

    Article  PubMed  Google Scholar 

  15. Collier S, Ghosh P (1995) Effects of transforming growth factor beta on proteoglycan synthesis by cell and explant cultures derived from the knee joint meniscus. Osteoarthritis Cartilage 3:127–138

    Article  PubMed  CAS  Google Scholar 

  16. Cook JL, Fox DB (2007) A novel bioabsorbable conduit augments healing of avascular meniscal tears in a dog model. Am J Sports Med 35:1877–1887

    Article  PubMed  Google Scholar 

  17. Dehaven KE, Arnoczky SP (1994) Meniscus repair: basic science, indications for repair, and open repair. Instr Course Lect 43:65–76

    PubMed  CAS  Google Scholar 

  18. Delos D, Rodeo SA (2011) Enhancing meniscal repair through biology: platelet-rich plasma as an alternative strategy. Instr Course Lect 60:453–460

    PubMed  Google Scholar 

  19. Dohan Ehrenfest DM, Rasmusson L, Albrektsson T (2009) Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol 27:158–167

    Article  Google Scholar 

  20. Driscoll MD, Robin BN, Horie M et al (2013) Marrow stimulation improves meniscal healing at early endpoints in a rabbit meniscal injury model. Arthroscopy 29:113–121

    Article  PubMed  Google Scholar 

  21. Dutton AQ, Choong PF, Goh JC et al (2010) Enhancement of meniscal repair in the avascular zone using mesenchymal stem cells in a porcine model. J Bone Joint Surg Br 92:169–175

    Article  PubMed  CAS  Google Scholar 

  22. Duygulu F, Demirel M, Atalan G et al (2012) Effects of intra-articular administration of autologous bone marrow aspirate on healing of full-thickness meniscal tear: an experimental study on sheep. Acta Orthop Traumatol Turc 46:61–67

    Article  PubMed  Google Scholar 

  23. Eggli S, Wegmuller H, Kosina J et al (1995) Long-term results of arthroscopic meniscal repair. An analysis of isolated tears. Am J Sports Med 23:715–720

    Article  PubMed  CAS  Google Scholar 

  24. Fox JM, Rintz KG, Ferkel RD (1993) Trephination of incomplete meniscal tears. Arthroscopy 9:451–455

    Article  PubMed  CAS  Google Scholar 

  25. Freedman KB, Nho SJ, Cole BJ (2003) Marrow stimulating technique to augment meniscus repair. Arthroscopy 19:794–798

    Article  PubMed  Google Scholar 

  26. Gershuni DH, Skyhar MJ, Danzig LA et al (1989) Experimental models to promote healing of tears in the avascular segment of canine knee menisci. J Bone Joint Surg Am 71:1363–1370

    PubMed  CAS  Google Scholar 

  27. Heatley FW (1980) The meniscus–can it be repaired? An experimental investigation in rabbits. J Bone Joint Surg Br 62:397–402

    PubMed  CAS  Google Scholar 

  28. Hellio Le Graverand MP, Ou Y, Schield-Yee T et al (2001) The cells of the rabbit meniscus: their arrangement, interrelationship, morphological variations and cytoarchitecture. J Anat 198:525–535

    Article  Google Scholar 

  29. Hennerbichler A, Moutos FT, Hennerbichler D et al (2007) Interleukin-1 and tumor necrosis factor alpha inhibit repair of the porcine meniscus in vitro. Osteoarthritis Cartilage 15:1053–1060

    Article  PubMed  CAS  Google Scholar 

  30. Henning CE, Lynch MA, Clark JR (1987) Vascularity for healing of meniscus repairs. Arthroscopy 3:13–18

    Article  PubMed  CAS  Google Scholar 

  31. Henning CE, Lynch MA, Yearout KM et al (1990) Arthroscopic meniscal repair using an exogenous fibrin clot. Clin Orthop Relat Res:64–72

    Google Scholar 

  32. Imhoff AB, Feucht MJ (2013) Atlas sportorthopädisch-sporttraumatologische Operationen. Springer-Verlag, Berlin

  33. Ishida K, Kuroda R, Miwa M et al (2007) The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng 13:1103–1112

    Article  PubMed  CAS  Google Scholar 

  34. Ishimura M, Ohgushi H, Habata T et al (1997) Arthroscopic meniscal repair using fibrin glue. Part I: experimental study. Arthroscopy 13:551–557

    Article  PubMed  CAS  Google Scholar 

  35. Izuta Y, Ochi M, Adachi N et al (2005) Meniscal repair using bone marrow-derived mesenchymal stem cells: experimental study using green fluorescent protein transgenic rats. Knee 12:217–223

    Article  PubMed  Google Scholar 

  36. Kamimura T, Kimura M (2011) Repair of horizontal meniscal cleavage tears with exogenous fibrin clots. Knee Surg Sports Traumatol Arthrosc 19:1154–1157

    Article  PubMed  Google Scholar 

  37. Knighton DR, Hunt TK, Thakral KK et al (1982) Role of platelets and fibrin in the healing sequence: an in vivo study of angiogenesis and collagen synthesis. Ann Surg 196:379–388

    Article  PubMed  CAS  Google Scholar 

  38. Kobayashi K, Fujimoto E, Deie M et al (2004) Regional differences in the healing potential of the meniscus-an organ culture model to eliminate the influence of microvasculature and the synovium. Knee 11:271–278

    Article  PubMed  Google Scholar 

  39. Kopf S, Birkenfeld F, Becker R et al (2010) Local treatment of meniscal lesions with vascular endothelial growth factor. J Bone Joint Surg Am 92:2682–2691

    Article  PubMed  Google Scholar 

  40. Krych AJ, Pitts RT, Dajani KA et al (2010) Surgical repair of meniscal tears with concomitant anterior cruciate ligament reconstruction in patients 18 years and younger. Am J Sports Med 38:976–982

    Article  PubMed  Google Scholar 

  41. Longo UG, Campi S, Romeo G et al (2012) Biological strategies to enhance healing of the avascular area of the meniscus. Stem Cells Int 2012:528359

    PubMed  Google Scholar 

  42. Lynch MA, Henning CE, Glick KR Jr (1983) Knee joint surface changes. Long-term follow-up meniscus tear treatment in stable anterior cruciate ligament reconstructions. Clin Orthop Relat Res:148–153

    Google Scholar 

  43. Majewski M, Stoll R, Widmer H et al (2006) Midterm and long-term results after arthroscopic suture repair of isolated, longitudinal, vertical meniscal tears in stable knees. Am J Sports Med 34:1072–1076

    Article  PubMed  Google Scholar 

  44. Makris EA, Hadidi P, Athanasiou KA (2011) The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials 32:7411–7431

    Article  PubMed  CAS  Google Scholar 

  45. McAndrews PT, Arnoczky SP (1996) Meniscal repair enhancement techniques. Clin Sports Med 15:499–510

    PubMed  CAS  Google Scholar 

  46. McNulty AL, Guilak F (2008) Integrative repair of the meniscus: lessons from in vitro studies. Biorheology 45:487–500

    PubMed  Google Scholar 

  47. McNulty AL, Moutos FT, Weinberg JB et al (2007) Enhanced integrative repair of the porcine meniscus in vitro by inhibition of interleukin-1 or tumor necrosis factor alpha. Arthritis Rheum 56:3033–3042

    Article  PubMed  CAS  Google Scholar 

  48. Messner K, Gao J (1998) The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 193 (Pt 2):161–178

    Article  PubMed  CAS  Google Scholar 

  49. Ochi M, Uchio Y, Okuda K et al (2001) Expression of cytokines after meniscal rasping to promote meniscal healing. Arthroscopy 17:724–731

    Article  PubMed  CAS  Google Scholar 

  50. Okuda K, Ochi M, Shu N et al (1999) Meniscal rasping for repair of meniscal tear in the avascular zone. Arthroscopy 15:281–286

    Article  PubMed  CAS  Google Scholar 

  51. Piontek T, Ciemniewska-Gorzela K, Szulc A et al (2012) All-arthroscopic technique of biological meniscal tear therapy with collagen matrix. Pol Orthop Traumatol 77:39–45

    PubMed  Google Scholar 

  52. Port J, Jackson DW, Lee TQ et al (1996) Meniscal repair supplemented with exogenous fibrin clot and autogenous cultured marrow cells in the goat model. Am J Sports Med 24:547–555

    Article  PubMed  CAS  Google Scholar 

  53. Ra HJ, Ha JK, Jang SH et al (2012) Arthroscopic inside-out repair of complete radial tears of the meniscus with a fibrin clot. Knee Surg Sports Traumatol Arthrosc. [Epub ahead of print]

  54. Ritchie JR, Miller MD, Bents RT et al (1998) Meniscal repair in the goat model. The use of healing adjuncts on central tears and the role of magnetic resonance arthrography in repair evaluation. Am J Sports Med 26:278–284

    PubMed  CAS  Google Scholar 

  55. Rodeo SA (2000) Arthroscopic meniscal repair with use of the outside-in technique. Instr Course Lect 49:195–206

    PubMed  CAS  Google Scholar 

  56. Schmitt A, Van Griensven M, Imhoff AB et al (2012) Application of stem cells in orthopedics. Stem Cells Int 2012:394962

    PubMed  Google Scholar 

  57. Scordino LE, Deberardino TM (2012) Biologic enhancement of meniscus repair. Clin Sports Med 31:91–100

    Article  PubMed  Google Scholar 

  58. Staerke C, Kopf S, Becker R (2008) The extent of laceration of circumferential fibers with suture repair of the knee meniscus. Winner of the AGA DonJoy award 2006. Arch Orthop Trauma Surg 128:525–530

    Article  PubMed  Google Scholar 

  59. Steenbrugge F, Verdonk R, Verstraete K (2002) Long-term assessment of arthroscopic meniscus repair: a 13-year follow-up study. Knee 9:181–187

    Article  PubMed  Google Scholar 

  60. Tenuta JJ, Arciero RA (1994) Arthroscopic evaluation of meniscal repairs. Factors that effect healing. Am J Sports Med 22:797–802

    Article  PubMed  CAS  Google Scholar 

  61. Thomas KA (1996) Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem 271:603–606

    Article  PubMed  CAS  Google Scholar 

  62. Tumia NS, Johnstone AJ (2009) Platelet derived growth factor-AB enhances knee meniscal cell activity in vitro. Knee 16:73–76

    Article  PubMed  Google Scholar 

  63. Tumia NS, Johnstone AJ (2004) Promoting the proliferative and synthetic activity of knee meniscal fibrochondrocytes using basic fibroblast growth factor in vitro. Am J Sports Med 32:915–920

    Article  PubMed  Google Scholar 

  64. Tumia NS, Johnstone AJ (2004) Regional regenerative potential of meniscal cartilage exposed to recombinant insulin-like growth factor-I in vitro. J Bone Joint Surg Br 86:1077–1081

    Article  PubMed  CAS  Google Scholar 

  65. Van Trommel MF, Simonian PT, Potter HG et al (1998) Arthroscopic meniscal repair with fibrin clot of complete radial tears of the lateral meniscus in the avascular zone. Arthroscopy 14:360–365

    Article  Google Scholar 

  66. Van Trommel MF, Simonian PT, Potter HG et al (1998) Different regional healing rates with the outside-in technique for meniscal repair. Am J Sports Med 26:446–452

    Google Scholar 

  67. Webber RJ, York JL, Vanderschilden JL et al (1989) An organ culture model for assaying wound repair of the fibrocartilaginous knee joint meniscus. Am J Sports Med 17:393–400

    Article  PubMed  CAS  Google Scholar 

  68. Wei LC, Gao SG, Xu M et al (2012) A novel hypothesis: the application of platelet-rich plasma can promote the clinical healing of white-white meniscal tears. Med Sci Monit 18:HY47–50

    Article  PubMed  Google Scholar 

  69. Wilusz RE, Weinberg JB, Guilak F et al (2008) Inhibition of integrative repair of the meniscus following acute exposure to interleukin-1 in vitro. J Orthop Res 26:504–512

    Article  PubMed  CAS  Google Scholar 

  70. Zellner J, Hierl K, Mueller M et al (2013) Stem cell-based tissue-engineering for treatment of meniscal tears in the avascular zone. J Biomed Mater Res B Appl Biomater. [Epub ahead of print]

  71. Zellner J, Mueller M, Berner A et al (2010) Role of mesenchymal stem cells in tissue engineering of meniscus. J Biomed Mater Res A 94:1150–1161

    PubMed  Google Scholar 

  72. Zhang Z, Arnold JA (1996) Trephination and suturing of avascular meniscal tears: a clinical study of the trephination procedure. Arthroscopy 12:726–731

    Article  PubMed  CAS  Google Scholar 

  73. Zhang Z, Arnold JA, Williams T et al (1995) Repairs by trephination and suturing of longitudinal injuries in the avascular area of the meniscus in goats. Am J Sports Med 23:35–41

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seine Koautoren auf folgende Beziehungen hin: Peter U. Brucker, Matthias J. Feucht und Roland Becker: kein Interessenkonflikt. Stefan Hinterwimmer und Andreas B. Imhoff haben eine beratende Funktion bei der Firma Arthrex (Karlsfeld, Deutschland). Dirk Holsten hat eine beratende Funktion bei der Firma Ivy Sports Medicine (Gräfelfing, Deutschland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.U. Brucker Dipl.-Sportl..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brucker, P., Feucht, M., Becker, R. et al. Intraoperative biologische Augmentation am Meniskus. Arthroskopie 26, 105–113 (2013). https://doi.org/10.1007/s00142-012-0736-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00142-012-0736-6

Schlüsselwörter

Keywords

Navigation