Skip to main content
Log in

Estimation of affine transformations directly from tomographic projections in two and three dimensions

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new approach to estimate two- and three-dimensional affine transformations from tomographic projections. Instead of estimating the deformation from the reconstructed data, we introduce a method which works directly in the projection domain, using parallel and fan beam projection geometries. We show that any affine deformation can be analytically compensated, and we develop an efficient multiscale estimation framework based on the normalized cross correlation. The accuracy of the approach is verified using simulated and experimental data, and we demonstrate that the new method needs less projection angles and has a much lower computational complexity as compared to approaches based on the standard reconstruction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geers M.G.D., DeBorst R., Brekelmans W.A.M.: Computing strain fields from discrete displacement fields in 2d-solids. Int. J. Solids Struct. 33(29), 4293–4307 (1996)

    Article  MATH  Google Scholar 

  2. Bay B., Smith T., Fyhrie D., Saad M.: Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp. Mech. 39(3), 217–226 (1999)

    Article  Google Scholar 

  3. Verhulp E., van Rietbergen B., Huiskes R.: A three-dimensional digital image correlation technique for strain measurements in microstructures. J. Biomech. 37(9), 1313–1320 (2004)

    Article  Google Scholar 

  4. Zhang D., Zhang X., Cheng G.: Compression strain measurement by digital speckle correlation. Exp. Mech. 39(1), 62–65 (1999)

    Article  Google Scholar 

  5. Cheng P., Sutton M., Schreier H., McNeill S.: Full-field speckle pattern image correlation with b-spline deformation function. Exp. Mech. 42(3), 344–352 (2002)

    Article  Google Scholar 

  6. Maintz J.B., Viergever M.A.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)

    Article  Google Scholar 

  7. Zitova B., Flusser J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  8. Natterer, F., Wuebbeling, F.: Mathematical methods in image reconstruction. Soc. Ind. Appl. Math. Philadelphia (2001)

  9. Kak A.C., Slaney M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)

    MATH  Google Scholar 

  10. De Man B., Nuyts J., Dupont P., Marchal G., Suetens P.: Reduction of metal streak artifacts in X-ray computed tomography using a transmission maximum a posteriori algorithm. IEEE Trans. Nuclear Sci. 47(3), 977–981 (2000)

    Article  Google Scholar 

  11. Fitchard E.E., Aldridge J.S., Reckwerdt P.J., Mackie T.R.: Registration of synthetic tomographic projection data sets using cross-correlation. Phys. Med. Biol. 43(6), 1645–1657 (1998)

    Article  Google Scholar 

  12. Fitchard E.E., Aldridge J.S., Reckwerdt P.J., Olivera G.H., Mackie T.R., Iosevich A.: Six parameter patient registration directly from projection data. Nuclear Instrum. Methods Phys. Res. Sect. a-Accelerators Spectrom. Detect. Assoc. Equip. 421(1–2), 342–351 (1999)

    Article  Google Scholar 

  13. Fitchard E.E., Aldridge J.S., Ruchala K., Fang G., Balog J., Pearson D.W., Olivera G.H., Schloesser E.A., Wenman D., Reckwerdt P.J., Mackie T.R.: Registration using tomographic projection files. Phys. Med. Biol. 44(2), 495–507 (1999)

    Article  Google Scholar 

  14. Lu W.G., Fitchard E.E., Olivera G.H., You J., Ruchala K.J., Aldridge J.S., Mackie T.R.: Image/patient registration from (partial) projection data by the fourier phase matching method. Phys. Med. Biol. 44(8), 2029–2048 (1999)

    Article  Google Scholar 

  15. Bingham, P., Arrowood, L.: Projection registration applied to nondestructive testing. J. Electron. Imag. 19(3) (2010)

  16. Weihua M., Tianfang L., Nicole W., Lei X.: Ct image registration in sinogram space. Med. Phys. 34(9), 3596–3602 (2007)

    Article  Google Scholar 

  17. Milanfar P.: A model of the effect of image motion in the radon transform domain. IEEE Trans. Image Process. 8(9), 1276–1281 (1999)

    Article  Google Scholar 

  18. Robinson D., Milanfar P.: Fast local and global projection-based methods for affine motion estimation. J. Math. Imag. Vis. 18(1), 35–54 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Desbat L., Roux S., Grangeat P.: Compensation of some time dependent deformations in tomography. IEEE Trans. Med. Imag. 26(2), 261–269 (2007)

    Article  Google Scholar 

  20. Bartels, C., de Haan, G.: Direct motion estimation in the radon transform domain using match-profile backprojections. In: de Haan, G. (ed.) Image Processing, 2007. ICIP 2007. IEEE International Conference on, vol. 6, pp. VI-153–VI-156 (2007)

  21. Tatsuhiko T., Shinichi H.: Detection of planar motion objects using radon transform and one-dimensional phase-only matched filtering. Syst. Comput. Jpn. 37(5), 56–66 (2006)

    Article  Google Scholar 

  22. Traver J.V., Pla F.: Motion analysis with the radon transform on log-polar images. J. Math. Imag. Vis. 30(2), 147–165 (2008)

    Article  Google Scholar 

  23. Mooser, R., Hack, E., Sennhauser, U., Székely, G.: Estimation of affine transformations directly from tomographic projections. In: 6th International Symposium on Image and Signal Processing and Analysis, pp. 377–382. Salzburg, Austria (2009)

  24. Deans S.R.: The Radon Transform and Some of its Applications. Wiley, New York (1983)

    MATH  Google Scholar 

  25. Woods, R.P.: Spatial transformation models. In: Handbook of medical imaging, pp. 465–490. Academic Press, Inc., San Diego (2000)

  26. Lewis, J.P.: Fast normalized cross-correlation. In: Vision Interface, pp. 120–123. Canadian Image Processing and Pattern Recognition Society (1995)

  27. Richard H.B., Robert B.S., Gerald A.S.: Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Math. Program. 40(3), 247–263 (1988)

    Article  MATH  Google Scholar 

  28. De Boor C.: A Practical Guide to Splines, rev. edn. Springer, New York (2001)

    Google Scholar 

  29. Lindeberg T.: Scale-space theory: A basic tool for analysing structures at different scales. J. Appl. Stat. 21(2), 224–270 (1994)

    Google Scholar 

  30. Forsberg F., Mooser R., Arnold M., Hack E., Wyss P.: 3d micro-scale deformations of wood in bending: synchrotron radiation [mu]ct data analyzed with digital volume correlation. J. Struct. Biol. 164(3), 255–262 (2008)

    Article  Google Scholar 

  31. Forsberg F., Sjödahl M., Mooser R., Hack E., Wyss P.: Full three-dimensional strain measurements on wood exposed to three-point bending: Analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data. Strain 46(1), 47–60 (2010)

    Article  Google Scholar 

  32. Trtik P., Dual J., Keunecke D., Mannes D., Niemz P., Stähli P., Kaestner A., Groso A., Stampanoni M.: 3d imaging of microstructure of spruce wood. J. Struct. Biol. 159(1), 46–55 (2007)

    Article  Google Scholar 

  33. Marone, F., Hintermuller, C., McDonald, S., Abela, R., Mikuljan, G., Isenegger, A., Stampanoni, M.: X-ray tomographic microscopy at tomcat. In: Developments in X-Ray Tomography VI, vol. 7078, pp. 707,822–11. SPIE, San Diego (2008)

  34. Stampanoni M., Groso A., Isenegger A., Mikuljan G., Chen Q., Meister D., Lange M., Betemps R., Henein S., Abela R.: Tomcat: A beamline for TOmographic Microscopy and Coherent rAdiology experimenTs. AIP Conf. Proceed. 879(1), 848–851 (2007)

    Article  Google Scholar 

  35. Schretter, C., Neukirchen, C., Bertram, M., Rose, G.: Correction of some time-dependent deformations in parallel-beam computed tomography. In: Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE International Symposium on, pp. 764–767 (2008)

  36. Tuy H.K.: An inversion-formula for cone-beam reconstruction. Siam J. Appl. Math. 43(3), 546–552 (1983)

    Article  MathSciNet  Google Scholar 

  37. Smith B.D.: Image reconstruction from cone-beam projections: Necessary and sufficient conditions and reconstruction methods. IEEE Trans. Med. Imag. 4(1), 14–25 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Mooser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mooser, R., Forsberg, F., Hack, E. et al. Estimation of affine transformations directly from tomographic projections in two and three dimensions. Machine Vision and Applications 24, 419–434 (2013). https://doi.org/10.1007/s00138-011-0376-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-011-0376-2

Keywords

Navigation