Skip to main content

Advertisement

Log in

Effects of shorter versus longer storage time of transfused red blood cells in adult ICU patients: a systematic review with meta-analysis and Trial Sequential Analysis

  • Systematic Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Patients in the intensive care unit (ICU) are often transfused with red blood cells (RBC). During storage, the RBCs and storage medium undergo changes, which may have clinical consequences. Several trials now have assessed these consequences, and we reviewed the present evidence on the effects of shorter versus longer storage time of transfused RBCs on outcomes in ICU patients.

Methods

We conducted a systematic review with meta-analyses and trial sequential analyses (TSA) of randomised clinical trials including adult ICU patients transfused with fresher versus older or standard issue blood.

Results

We included seven trials with a total of 18,283 randomised ICU patients; two trials of 7504 patients were judged to have low risk of bias. We observed no effects of fresher versus older blood on death (relative risk 1.04, 95% confidence interval (CI) 0.97–1.11; 7349 patients; TSA-adjusted CI 0.93–1.15), adverse events (1.26, 0.76–2.09; 7332 patients; TSA-adjusted CI 0.16–9.87) or post-transfusion infections (1.07, 0.96–1.20; 7332 patients; TSA-adjusted CI 0.90–1.27). The results were unchanged by including trials with high risk of bias. TSA confirmed the results and the required information size was reached for mortality for a relative risk change of 20%.

Conclusions

We may be able to reject a clinically meaningful effect of RBC storage time on mortality in transfused adult ICU patients as our trial sequential analyses reject a 10% relative risk change in death when comparing fresher versus older blood for transfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CI:

confidence interval

CL:

confidence limits

ESM:

electronic supplementary material

FNHTR:

febrile non-haemolytic transfusion reactions

FWER:

family-wise error rate

GRADE:

grading of recommendations, assessment, development and evaluation

HRQoL:

health-related quality of life

ICU:

intensive care unit

ICH:

International Conference on Harmonisation

NO:

nitric oxide

PRISMA-P:

preferred reporting items for systematic review and meta-analysis protocols

PROSPERO:

international prospective register of systematic reviews

RBC:

red blood cell

RCT:

randomised clinical trial

RR:

relative risk

RRI:

relative risk increase

RRR:

relative risk reduction

RRT:

renal replacement therapy

SAE:

serious adverse event

TSA:

Trial Sequential Analysis

References

  1. Vincent JL, Baron J-F, Reinhart K et al (2002) Anemia and blood transfusion in critically ill patients. JAMA 288:1499–1507

    Article  PubMed  Google Scholar 

  2. Corwin HL, Gettinger A, Pearl RG et al (2004) The CRIT study: anemia and blood transfusion in the critically ill—current clinical practice in the United States. Crit Care Med 32:39–52

    Article  PubMed  Google Scholar 

  3. Jonsson AB, Perner A (2017) Changes from 2012 to 2015 in intravenous fluid solutions issued to hospital departments. Acta Anaesthesiol Scand 61:532–538

    Article  PubMed  CAS  Google Scholar 

  4. Lægemiddelstyrelsen (2005) Bekendtgørelse om kvalitets- og sikkerhedskrav til blodbankvirksomhed. https://www.retsinformation.dk/Forms/R0710.aspx?id=10174. Accessed 1 Oct 2017

  5. Dansk Selskab forfor Klinisk Immunologi (2016) Transfusionsmedicinske Standarder. http://tms-online.dk/. Accessed 1 Oct 2017

  6. American Association of Blood Banks (2013) Circular of information for the use of human blood and blood components. http://www.aabb.org/tm/coi/Pages/default.aspx. Accessed 1 Oct 2017

  7. Vincent JL, Baron J-F, Reinhart K et al (2002) Anemia and blood transfusion in critically ill patients. JAMA 288:1499–1507

    Article  PubMed  Google Scholar 

  8. Whitaker B, Rajbhandary S, Kleinman S et al (2016) Trends in United States blood collection and transfusion: results from the 2013 AABB blood collection, utilization, and patient blood management survey. Transfusion 56:2173–2183

    Article  PubMed  Google Scholar 

  9. Wolfe LC (1985) The membrane and the lesions of storage in preserved red cells. Transfusion 25:185–203

    Article  PubMed  CAS  Google Scholar 

  10. Berezina TL, Zaets SB, Morgan C et al (2002) Influence of storage on red blood cell rheological properties. J Surg Res 102:6–12

    Article  PubMed  CAS  Google Scholar 

  11. Bordbar A, Johansson PI, Paglia G et al (2016) Identified metabolic signature for assessing red blood cell unit quality is associated with endothelial damage markers and clinical outcomes. Transfusion 56:852–862

    Article  PubMed  Google Scholar 

  12. Valtis DJ, Kennedy A (1954) Defective gas-transport function of stored red blood-cells. Lancet 266:119–125

    Article  PubMed  CAS  Google Scholar 

  13. Anniss AM, Sparrow RL (2006) Storage duration and white blood cell content of red blood cell (RBC) products increases adhesion of stored RBCs to endothelium under flow conditions. Transfusion 46:1561–1567

    Article  PubMed  CAS  Google Scholar 

  14. Neuman R, Hayek S, Rahman A et al (2015) Effects of storage-aged red blood cell transfusions on endothelial function in hospitalized patients. Transfusion 55:782–790

    PubMed  Google Scholar 

  15. Tinmouth A, Fergusson D, Yee IC, Hébert PC (2006) Clinical consequences of red cell storage in the critically ill. Transfusion 46:2014–2027

    Article  PubMed  Google Scholar 

  16. Rygård SL, Jonsson AB, Madsen MB et al (2017) Effects of red blood cell storage time on transfused patients in the ICU-protocol for a systematic review. Acta Anaesthesiol Scand 61:1384–1397

    Article  PubMed  CAS  Google Scholar 

  17. Higgins JPT, Green S (2011) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. Cochrane Collab

  18. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100

    Article  PubMed  PubMed Central  Google Scholar 

  19. Atkins D, Best D, Briss PA et al (2004) Grading quality of evidence and strength of recommendations. BMJ 328:1490

    Article  PubMed  Google Scholar 

  20. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2015) Integrated Addendum To ICH E6 (R1): Guideline for Good Clinical Practice. 2:June

  21. Higgins JPT, Altman DG, Gotzsche PC et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928–d5928

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wetterslev J, Thorlund K, Brok J, Gluud C (2008) Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol 61:64–75

    Article  PubMed  Google Scholar 

  23. Jakobsen JC, Wetterslev J, Winkel P et al (2014) Thresholds for statistical and clinical significance in systematic reviews with meta-analytic methods. BMC Med Res Methodol 14:120

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jakobsen JC, Wetterslev J, Lange T, Gluud C (2016) Viewpoint: taking into account risks of random errors when analysing multiple outcomes in systematic reviews. Cochrane Database Syst Rev 3:ED000111

    PubMed  Google Scholar 

  25. Wetterslev J, Thorlund K, Brok J, Gluud C (2009) Estimating required information size by quantifying diversity in random-effects model meta-analyses. BMC Med Res Methodol 9:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    PubMed  CAS  Google Scholar 

  27. Demets D (1987) Methods for combining randomized clinical trials: strengths and limitations. Stat Med 6:341–350

    Article  PubMed  CAS  Google Scholar 

  28. Dersimonian R, Laird N (1986) Meta-analysis in clinical trials. Stat Med 188:177–188

    Google Scholar 

  29. Deeks J, Higgins J (2010) Statistical algorithms in Review Manager 5. RevMan 5:3

    Google Scholar 

  30. Higgins JPT, Whitehead A, Simmonds M (2011) Sequential methods for random-effects meta-analysis. Stat Med 30:903–921

    Article  PubMed  Google Scholar 

  31. Mascha EJ (2015) Alpha, beta, meta: guidelines for assessing power and type I error in meta-analyses. Anesth Analg 121:1430–1433

    Article  PubMed  Google Scholar 

  32. Pogue JM, Yusuf S (1997) Cumulating evidence from randomized trials: utilizing sequential monitoring boundaries for cumulative meta-analysis. Control Clin Trials 18:580–593

    Article  PubMed  CAS  Google Scholar 

  33. TSA (2011) Trial sequential analysis (TSA) (Computer program on www.ctu.dk/tsa/). Copenhagen Trial Unit

  34. Turner RM, Bird SM, Higgins JPT (2013) The impact of study size on meta-analyses: examination of underpowered studies in Cochrane reviews. PLoS One 8:1–8

    Google Scholar 

  35. Wetterslev J (2015) Systematic reviews of anesthesiologic interventions reported as statistically significant: problems with power, precision, and type 1 error protection. Anesth Analg 121:1611–1622

    Article  PubMed  Google Scholar 

  36. Thorlund K, Imberger G, Johnston BC et al (2012) Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses. PLoS One 7:e39471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Walsh TS, McArdle F, McLellan SA et al (2004) Does the storage time of transfused red blood cells influence regional or global indexes of tissue oxygenation in anemic critically ill patients? Crit Care Med 32:364–371

    Article  PubMed  Google Scholar 

  38. Aubron C, Syres G, Nichol A et al (2012) A pilot feasibility trial of allocation of freshest available red blood cells versus standard care in critically ill patients. Transfusion 52:1196–1202

    Article  PubMed  Google Scholar 

  39. Kor DJ, Kashyap R, Weiskopf RB et al (2012) Fresh red blood cell transfusion and short-term pulmonary, immunologic, and coagulation status: a randomized clinical trial. Am J Respir Crit Care Med 185:842–850

    Article  PubMed  PubMed Central  Google Scholar 

  40. Damiani E, Adrario E, Luchetti MM et al (2015) Plasma free hemoglobin and microcirculatory response to fresh or old blood transfusions in sepsis. PLoS One 10:e0122655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lacroix J, Hebert PC, Fergusson DA et al (2015) Age of transfused blood in critically ill adults. N Engl J Med 372:1410–1418

    Article  PubMed  CAS  Google Scholar 

  42. Heddle NM, Cook RJ, Arnold DM et al (2016) Effect of short-term vs. long-term blood storage on mortality after transfusion. N Engl J Med 375:1937–1945

    Article  PubMed  Google Scholar 

  43. Cooper DJ, McQuilten ZK, Nichol A et al (2017) Age of red cells for transfusion and outcomes in critically ill adults. N Engl J Med 377:1858–1867

    Article  PubMed  Google Scholar 

  44. Dessertaine G, Hammer L, Chenais F et al (2008) Does red blood cell storage time still influence ICU survival? Transfus Clin Biol 15:154–159

    Article  PubMed  CAS  Google Scholar 

  45. Pettilä V, Westbrook AJ, Nichol AD et al (2011) Age of red blood cells and mortality in the critically ill. Crit Care 15:R116

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hassan M, Pham TN, Cuschieri J et al (2012) The association between the transfusion of older blood and outcomes after trauma. Shock 35:3–8

    Article  Google Scholar 

  47. Kaukonen K-M, Vaara ST, Pettilä V et al (2013) Age of red blood cells and outcome in acute kidney injury. Crit Care 17:R222

    Article  PubMed  PubMed Central  Google Scholar 

  48. Aubron C, Bailey M, McQuilten Z et al (2014) Duration of red blood cells storage and outcome in critically ill patients. J Crit Care 29:476.e1–476.e8

    Article  Google Scholar 

  49. Goel R, Johnson DJ, Scott AV et al (2016) Red blood cells stored 35 days or more are associated with adverse outcomes in high-risk patients. Transfusion 56:1690–1698

    Article  PubMed  Google Scholar 

  50. Mack J, Kahn S, Tinmouth A et al (2016) Dose-dependent effect of stored red blood: results of a sub- group analysis of the age of blood evaluation (ABLE) trial. Blood 128:96

    Google Scholar 

  51. Lehr A, Fergusson D, Sabri E et al (2016) Age of blood evaluation: a subgroup analysis of perioperative critically ill adults. Crit Care Med 44:460

    Article  Google Scholar 

  52. Walsh TS, Stanworth S, Boyd J et al (2017) The Age of BLood Evaluation (ABLE) randomised controlled trial: description of the UK-funded arm of the international trial, the UK cost–utility analysis and secondary analyses exploring factors associated with health-related quality of life and health-care costs during the 12-month follow-up. Health Technol Assess 21:1–118

    Article  PubMed  PubMed Central  Google Scholar 

  53. Lacroix J, Hébert PC, Fergusson DA et al (2015) Age of transfused blood in critically ill adults. N Engl J Med 372:1410–1418

    Article  PubMed  CAS  Google Scholar 

  54. Brunskill SJ, Wilkinson K, Doree C et al (2015) Transfusion of fresher versus older red blood cells for all conditions. Cochrane Database Syst Rev Art. No.: CD010801

  55. Chai-Adisaksopha C, Alexander PE, Guyatt G et al (2017) Mortality outcomes in patients transfused with fresher versus older red blood cells: a meta-analysis. Vox Sang 112:268–278

    Article  PubMed  CAS  Google Scholar 

  56. Wang D, Sun J, Solomon SB et al (2012) Transfusion of older stored blood and risk of death: a metaanalysis. Transfusion 52:1184–1195

    Article  PubMed  Google Scholar 

  57. Remy KE, Sun J, Wang D et al (2016) Transfusion of recently donated (fresh) red blood cells (RBCs) does not improve survival in comparison with current practice, while safety of the oldest stored units is yet to be established: a meta-analysis. Vox Sang 111:43–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Saager L, Turan A, Dalton J et al (2013) Erythrocyte storage duration is not associated with increased mortality in noncardiac surgical patients: a retrospective analysis of 6994 patients. Anesthesiology 118:51–58

    Article  PubMed  Google Scholar 

  59. Halmin M, Rostgaard K, Lee BK et al (2016) Length of storage of red blood cells and patient survival after blood transfusion: a binational cohort study. Ann Intern Med 166:248–256

    Article  PubMed  Google Scholar 

  60. Martí-Carvajal Arturo J, Simancas-Racines D, Peña-González Barbra S (2015) Prolonged storage of packed red blood cells for blood transfusion. Cochrane Database Syst Rev. Art. No.: CD009330

Download references

Acknowledgements

We would like to thank Sarah Louise Klingenberg, search coordinator for the Cochrane Hepato-Biliary Group, for performing the literature search.

Funding

SLR has received funding from the Research Council at Copenhagen University Hospital Rigshospitalet. The funding parties are not involved in the conduct of this review.

Author information

Authors and Affiliations

Authors

Contributions

SLR, AP and JW contributed to the conception of the study protocol. The manuscript was drafted by SLR and JW and was critically revised by all other authors. All authors reviewed the manuscript and have approved the publication in this current form.

Corresponding author

Correspondence to Sofie L. Rygård.

Ethics declarations

Conflicts of interest

JW is a member of the task force at Copenhagen Trial Unit to develop theory and software for doing Trial Sequential Analysis which is presently freeware at www.ctu.dk/tsa. The Department of Intensive Care, Rigshospitalet receives support for research from CSL Behring, Fresenius Kabi and Ferring Pharmaceuticals. No other potential conflict of interest relevant to this manuscript was reported. SLR received funding from the Research Council at Copenhagen University Hospital Rigshospitalet. The funding parties were not involved in the conduct of this review.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1669 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rygård, S.L., Jonsson, A.B., Madsen, M.B. et al. Effects of shorter versus longer storage time of transfused red blood cells in adult ICU patients: a systematic review with meta-analysis and Trial Sequential Analysis. Intensive Care Med 44, 204–217 (2018). https://doi.org/10.1007/s00134-018-5069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-018-5069-0

Keywords

Navigation