Skip to main content
Log in

Biokompatibilität von Polymer-Glaskeramik-Zement Cortoss®

In-vitro-Testung mit dem MG63-Zell-Modell

Biocompatibility of polymer-bioglass cement Cortoss®

In vitro test with the MG63 cell model

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Verankerung von Endoprothesen mit Polymethylmethacrylat(PMMA)-Zement wird seit über 50 Jahren vorgenommen und die Zementaugmentierung von Wirbelkörpern ist seit der Erstbeschreibung 1987 ein sehr häufig angewendetes Verfahren geworden. Die Zemente wurden den Anforderungen der minimal-invasiven Applikation in die Wirbelkörper angepasst, und die Kombination guter mechanischer Eigenschaften mit Biokompatibilität ist Gegenstand weiterer Entwicklungen. Unsere Studie untersucht die Eigenschaften eines Polymerzements mit Glaskeramik im Vergleich zu einem Kalziumphosphatzement.

Methode

Mit dem humanen MG63-Zellkultur-Modell wurden der Polymer-Glaskeramik-Zement Cortoss® und der Hydroxylapatitzement Kyphos® untersucht. Jeweils im Abstand von 24 h nach der ersten Inkubation wurde über 5–6 Tage das Medium in Gegenwart definierter Zementscheiben gewonnen. Dieses wurde jeweils 16 Zellkulturansätzen für jeden Zeitraum zugesetzt. Die Vitalitätsbeurteilung der Zellen erfolgte photometrisch mit dem MTT-Assay bei einer Absorption von 550 nm, die morphologische Untersuchung lichtmikroskopisch und mit dem Elektronenmikroskop.

Ergebnisse

Der Kalziumphosphatzement Kyphos® zeigt in den ersten Tagen der Zellkultur eine im Vergleich zur Kontrolle geringe Reduktion der Zellaktivität. Nach 5 Tagen war eine Angleichung an die Kontrolle erkennbar. Elektronenmikroskopisch waren nach einer Woche dreidimensionale Kristallformationen nachweisbar. In Gegenwart von Cortoss® war keine zelluläre Aktivität messbar, und die mikroskopische Untersuchung war negativ. Der zytotoxische Effekt wies zwischen den Tagen 1 und 5 nach der Zementanmischung keine Veränderung auf.

Schlussfolgerung

Der untersuchte Kalziumphosphatzement zeigt eine gute Biokompatibilität und ein Korrelat zur Apatitformation. Der Polymer-Glaskeramik-Zement weist innerhalb der ersten 5 Tage einen ausgeprägten zytotoxischen Effekt auf. Eine Erholungstendenz war in diesem Zeitraum nicht erkennbar. Polymer-Glaskeramik-Zement weist im Vergleich zu Kalziumphosphatzement eine schlechtere Biokompatibilität auf. Eine ideale Kombination physikalischer und biologischer Eigenschaften des Zements erscheint noch nicht erreicht.

Abstract

Background

Polymethylmethacrylate (PMMA) cement has been used for fixation of joint replacements for more than 50 years and cement augmentation of vertebrae has become a popular procedure since the first description in 1987. New cements have now been developed which are better suited to the requirements of minimally invasive application techniques for vertebral bodies. The combination of good mechanical properties and biocompatibility is the concern of present research. This study compared the features of a polymer-bioglass cement with a calcium phosphate cement used for vertebral augmentation.

Methods

The human osteoblast-like cell culture MG63 was used to study the polymer-glass ceramic cement Cortoss® and the hydroxyapatite cement Kyphos®. Every 24 h for 5-6 days a defined volume of the culture medium was harvested in the presence of the bone cements and added to 16 cell cultures for each time period. The viability of cells was determined photometrically at 550 nm with the MTT assay and cell morphology was studied using light and electron microscopy.

Results

In the presence of the calcium phosphate cement an early and small reduction of cell activity was found compared with the controls. At the end of 1 week the viability parameter improved nearly reaching the control level. Electron microscopy showed crystals with a 3-dimensional shape. The cell cultures with Cortoss® showed no cellular activity and the microscopic examinations were negative. This effect was not different at days 1–5 after polymerization of the cement.

Conclusions

The calcium phosphate cement studied showed a good biocompatibility and allowed morphological signs of apatite formation. At least within the first 5 days the polymer-glass ceramic cement showed a reasonable cytotoxic effect. There was no sign of recovery of cell function within that period. The biocompatibility of the polymer-glass ceramic cement appeared significantly worse compared with the calcium phosphate cement. An ideal composition of biomechanical properties and biocompatibility has not been achieved so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Bae H, Hatten HP, Linovitz R et al (2012) A prospective randomized FDA-DIE-Trial comparing Cortoss with PMMA for vertebroplasty. Spine 37:544–550

    Article  PubMed  Google Scholar 

  2. Blattert TR, Jestaedt L, Weckbach A (2009) Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate. Spine 34:108–114

    Article  PubMed  Google Scholar 

  3. Boyd D, Towler MR, Wren A, Clarkin OM (2008) Comparison of an experimental bone cement with surgical Simplex P, Spineplex and Cortoss. J Mater Sci Mater Med 19:1745–1752

    Article  PubMed  CAS  Google Scholar 

  4. Breusch SJ, Kühn KD (2003) Knochenzemente auf Basis von Polymethylmethacrylat. Orthopade 32:41–50

    Article  PubMed  CAS  Google Scholar 

  5. Calvo-Fernández T, Parra J, Fernández-Gutiérrez M et al (2010) Biocompatibility of alendronate-loaded acrylic cement for vertebroplasty. Eur Cell Mater 20:260–273

    PubMed  Google Scholar 

  6. Cheung KMC, Lu WW, Luk KDK et al (2005) Vertebroplasty by use of a strontium-containing bioactive bone cement. Spine 30:S84–S91

    Article  PubMed  Google Scholar 

  7. Ciapetti G, Granchi D, Savarino L et al (2002) In vitro testing of the potential for orthopedic bone cements to cause apoptosis of osteoblast-like cells. Biomaterials 23:617–627

    Article  PubMed  CAS  Google Scholar 

  8. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (2002) In vitro adhesion and biocompatibility of osteoblast-like cells to poly(methylmethacrylate) and poly(ethylmethacrylate) bone cements. J Mater Sci Mater Med 13:311–314

    Article  PubMed  CAS  Google Scholar 

  9. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (2002) Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials 23:569–576

    Article  PubMed  CAS  Google Scholar 

  10. Erbe EM, Clineff TD, Gualtieri G (2001) Comparison of a new bisphenol-a-glycidil dimethacrylate-based cortical bone void filler with polymethyl methacrylate. Eur Spine 10:S147–S152

    Article  Google Scholar 

  11. Fujita H, Nakamura T, Tamura J et al (1998) Bioactive bone cement: effect of the amount of glass-ceramic powder on bone-bonding strength. J Biomed Mater Res 40:145–152

    Article  PubMed  CAS  Google Scholar 

  12. Galovich LA, Perez-Higueras A, Altonaga JR et al (2011) Biomechanical, histological and histomorphometric analyses of calcium phosphate cement compared to PMMA for vertebral augmentation in a validated animal model. Eur Spine 20(Suppl 3):376–382

    Article  Google Scholar 

  13. Gomez-Vega JM, Saiz E, Tomsia AP et al (2000) Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. 1. Processing. Biomaterials 21:105–111

    Article  PubMed  CAS  Google Scholar 

  14. Grafe IE, Baier M, Nöldge G et al (2008) Calcium-phosphate and polymethylmethacrylate cement in long-term outcome after kyphoplasty of painful osteoporotic vertebral fractures. Spine 33:1284–1290

    Article  PubMed  Google Scholar 

  15. Greco F, Palma L de, Specchia N et al (1992) Polymethylmethacrylate-antiblastic drug compounds: an in vitro study assessing the cytotoxic effect in cancer cell lines – a new method for local chemotherapy of bone metastases. Orthopedics 15:189–194

    PubMed  CAS  Google Scholar 

  16. Harper EJ (1998) Bioactive bone cements. Proc Inst Mech Eng H 212:113–120

    PubMed  CAS  Google Scholar 

  17. Heini PF, Berlemann U (2001) Bone substitutes in vertebroplasty. Eur Spine J 10:S205–S213

    Article  PubMed  Google Scholar 

  18. Hench LL (2006) The story of Bioglass. J Mater Sci Mater Med 17:967–978

    Article  PubMed  CAS  Google Scholar 

  19. Heo HD, Cho YJ, Sheen SH et al (2009) Morphological changes of injected calcium phosphate cement in osteoporotic compressed vertebral bodies. Osteoporosis Int 20:2063–2070

    Article  CAS  Google Scholar 

  20. Kenny SM, Buggy M (2003) Bone cements and fillers: a review. J Mater Sci Mater Med 14:923–938

    Article  PubMed  CAS  Google Scholar 

  21. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  PubMed  CAS  Google Scholar 

  22. Leeson MC, Lippitt SB (1993) Thermal aspects of the use of polymethylmethacrylate in large metaphyseal defects in bone. Clin Orthop Relat Res 295:239–245

    PubMed  Google Scholar 

  23. Li YW, Leong JC, Lu WW et al (2000) A novel injectable bioactive bone cement for spinal surgery: a developmental and preclinical study. J Biomed Mater Res 52:164–170

    Article  PubMed  CAS  Google Scholar 

  24. Liebermann IH, Togawa D, Kayanja MM (2005) Vertebroplasty and kyphoplasty: filler materials. Spine 5:305S–316S

    Article  Google Scholar 

  25. Lu WW, Cheung KM, Li YW et al (2001) Bioactive bone cement as a principal fixture for spinal burst fracture: an in vitro biomechanical and morphologic study. Spine 15:2684–2690

    Article  Google Scholar 

  26. Maccauro G, Cittadini A, Casarci M et al (2007) Methoterxate-added acrylic cement: biological and physical properties. J Mater Sci Mater Med 18:839–844

    Article  PubMed  CAS  Google Scholar 

  27. Miyazaki T, Ohtsuki C, Kyomoto M et al (2003) Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimeth-oxysilane and calcium chloride. J Biomed Mater Res A 67:1417–1423

    Article  PubMed  Google Scholar 

  28. Mori A, Ohtsuki C, Miyazaki T et al (2005) Synthesis of bioactive PMMA bone cement via modification with methacyrloxypropyltrimeth-oxysilane and calcium acetate. J Mater Sci Mater in Med 16:713–718

    Article  CAS  Google Scholar 

  29. Moursi AM, Winnard AV, Winnard PL et al (2002) Enhanced osteoblast response to a polymethylmethacrylate-hydroxyapatite composite. Biomaterials 23:133–144

    Article  PubMed  CAS  Google Scholar 

  30. Nelson DA, Barker ME, Hamlin BH (1997) Thermal effects of acrylic cementation at bone tumour sites. Int J Hyperthermia 13:287–306

    Article  PubMed  CAS  Google Scholar 

  31. Opara TN, Dalby MJ, Harper EJ et al (2003) The effect of varying percentage of hydroxyapatite in poly(ethylmethacrylate) bone cement on human osteoblast-like cells. J Mater Sci Mater Med 14:277–282

    Article  PubMed  CAS  Google Scholar 

  32. Pomrink GJ, DiCicco MP, Clineff TD, Erbe EM (2003) Evaluation of the reaction of Cortoss™, a thermoset cortical bone void filler. Biomaterials 24:1023–1031

    Article  PubMed  CAS  Google Scholar 

  33. Sabokbar A, Fujikawa Y, Murray DW, Athanasou NA (1998) Bisphosphonates in bone cement inhibit PMMA particle induced bone resoprtion. Ann Rheum Dis 57:614–618

    Article  PubMed  CAS  Google Scholar 

  34. Smit RS, Velde D van der, Hegemann JH (2008) Augmented pin fixation with Cortoss for an unstable AO-A3 type distal radius fracture in a patient with a manifest osteoporosis. Arch Orthop Trauma Surg 128:989–993

    Article  PubMed  CAS  Google Scholar 

  35. Sugino A, Miyazaki T, Kawachi G et al (2008) Relationship between apatite-forming ability and mechanical properties of bioactive PMMA-based bone cement modified with calcium salts and alkoxysilane. J Mater Sci Mater Med 19:1399–1405

    Article  PubMed  CAS  Google Scholar 

  36. Sugino A, Ohtsuki C, Miyazaki T (2008) In vivo response of bioactive PMMA-based bone cement modified with alkoxysilane and calcium acetate. J Biomater Appl 23:213–228

    Article  PubMed  CAS  Google Scholar 

  37. Tan F, Naciri M, Al-Rubeai M (2011) Osteoconductivity and growth factor production by MG63 osteoblastic cells on bioglass-coated orthopedic implants. Biotechnol Bioeng 108:454–464

    Article  PubMed  CAS  Google Scholar 

  38. Wilke HJ, Mehnert U, Claes LE et al (2006) Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading. Spine 31:2934–2941

    Article  PubMed  Google Scholar 

  39. Yamamuro T, Nakamura T, Lida H et al (1998) Development of bioactive bone cement and its clinical applications. Biomaterials 19:1479–1482

    Article  PubMed  CAS  Google Scholar 

  40. Zambonin G, Colucci S, Cantatore F, Grano M (1998) Response of human osteoblasts to polymethylmetacrylate in vitro. Calcif Tissue Int 62:362–365

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seine Koautoren an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fölsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fölsch, C., Pinkernell, R. & Stiletto, R. Biokompatibilität von Polymer-Glaskeramik-Zement Cortoss®. Orthopäde 42, 170–176 (2013). https://doi.org/10.1007/s00132-013-2062-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-013-2062-8

Schlüsselwörter

Keywords

Navigation