Skip to main content
Log in

Sublethal Toxic Effects of Nonylphenol Ethoxylate and Nonylphenol to Moina macrocopa

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The aim of this paper was to examine the sublethal toxic effects of nonylphenol ethoxylate (NP10EO), its primary degradation product nonylphenol (NP), and their mixture on Moina macrocopa. Chronic toxicity tests were carried out by using sublethal chemical concentrations. Results showed that all treatments reduced the survivorship, body length, and reproduction of M. macrocopa with NP being 10 %–20 % more toxic to M. macrocopa than NP10EO. Results also indicated that the toxic effects of NP10EO and NP mixture on M. macrocopa were more severe than that of any single chemical alone. At the highest concentration in this experiment, 0.337 mg L−1 NP10EO plus 0.0154 mg L−1 NP treatment caused the survivorship of M. macrocopa to zero, neonates number of reproductions to zero, 45.5 % reduction in the body length, and 88 % reduction in the total neonates number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baer N, Owens D (1999) Evaluation of selected endocrine disrupting compounds on sex determination in Daphnia magna using reduced photoperiod and different feeding rates. Bull Environ Contam Toxicol 62:214–221

    Article  CAS  Google Scholar 

  • Baldwin S, Graham E, Shea D, LeBlanc A (1997) Metabolic androgenization of female Daphia magna by the xenoestrogen 4-nonylphenol. Environ Toxicol Chem 16:1905–1911

    Article  CAS  Google Scholar 

  • Barata C, Porte C, Baird D (2004) Experimental designs to assess endocrine disrupting effects in invertebrates: a review. Ecotoxicology 13:511–517

    Article  CAS  Google Scholar 

  • Blackburn A, Waldock J (1995) Concentration of alkylphenols in rivers and estuaries in England and Wales. Water Res 29:1623–1629

    Article  CAS  Google Scholar 

  • Burak S (1997) Life tables of Moina macrocopa (Straus) in successive generations under food and temperature adaptation. Hydrobiologia 360:101–108

    Article  Google Scholar 

  • Christina L, Matthew B, Tamara G (2008) Effects of 4-nonylphenol on the endocrine system of the shore crab, Carcinus maenas. Environ Toxicol 23:309–318

    Article  Google Scholar 

  • Crisp M, Clegg D, Cooper L, Wood P, Anderson G et al (1998) Environmental endocrine disruption: an effects assessment and analysis. Environ Health Perspect 106:11–56

    Article  CAS  Google Scholar 

  • Dinan L, Bourne P, Whiting P, Dhadialla S, Hutchinson H (2001) Screening of environmental contaminants for ecdysteroid agonist and antagonist activity using the Drosophila melanogaster B11 cell in vitro assay. Environ Toxicol Chem 20:2038–2046

    Article  CAS  Google Scholar 

  • Eric P, James M, Chris W (2004) Effects of chronic waterborne nickel exposure on two successive generations of Daphnia Magna. Environ Toxicol Chem 23:1051–1056

    Article  Google Scholar 

  • Fen J, Jian Y, Min Y (2007) Vertical distribution of nonylphenol and nonylphenol ethoxylates in sedimentary core from the Beipaiming Channel, North China. J Environ Sci-China 19:353–357

    Article  Google Scholar 

  • Garcia G, Nandini S, Sarma S (2004) Effect of cadmium on the population dynamics of Moina macrocopa and Macrothrix triserialis (Cladocera). Bull Environ Contam Toxicol 72:717–724

    CAS  Google Scholar 

  • LeBlanc A (2007) Crustacean endocrine toxicology: a review. Ecotoxicology 16:61–81

    Article  CAS  Google Scholar 

  • Nandini S, Mayeli M, Sarma S (2004) Effect of stress on the life-table demography of Moina macrocopa. Hydrobiologia 526:245–254

    Article  Google Scholar 

  • Nice E, Thorndyke C, Morritt D, Steele S, Crane M (2000) Development of Crassostrea gigas larvae is affected by 4-nonylphenol. Mar Pollut Bull 40:491–496

    Article  CAS  Google Scholar 

  • Sandrine M, Frederica A (2010) Effects of chronic uranium exposure on life history and physiology of Daphnia magna over three successive generations. Aquat Toxicol 99:309–319

    Article  Google Scholar 

  • Severin F, Welzel G, Juttner I, Pfister G, Schramm W (2003) Effects of nonylphenol on zooplankton in aquatic microcosms. Environ Toxicol Chem 22:273–2738

    Article  Google Scholar 

  • Shang Y, Macdonald W, Ikonomou G (1999) Persistence of nonylphenol ethoxylate surfactants and their primary degradation products in sediments from near a municipal outfall in the Strait of Georgia, British Columbia, Canada. Environ Sci Technol 33:1366–1372

    Article  CAS  Google Scholar 

  • Soares A, Guieysse B, Jefferson B, Cartmell E, Lester N (2008a) Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34:1033–1049

    Article  CAS  Google Scholar 

  • Soares S, Nakagawa Y, Tayama K (2008b) Genotoxic effects of environmental estrogen-like compounds in CKO-K1 cells. Mutat Res 649:114–125

    Article  Google Scholar 

  • Teurnear B (2004) Biodegradation of nonylphenol ethoxylates. Master dissertation, Lund University, Sweden, 46 p

  • Thiele B, Gunther K, Schwuge J (1997) Alkylphenol ethoxylates: trace analysis and environmental behavior. Chem Rev 97:3247–3272

    Article  CAS  Google Scholar 

  • White R, Jobling S, Hoare A, Sumpter P, Parker G (1994) Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 136:175–182

    Google Scholar 

  • Xuelei H, Jingyun Z, Shunshan D (2011) Synergistic toxic effects of nonylphenol and nonylphenol ethoxylate on Moina macrocopa. Ecol and Environ Sci 20:1725–1730

    Google Scholar 

  • Yokota H, Seki M, Maeda M, Oshima Y, Tadokoro H, Honjo T, Kobayashi K (2001) Life cycle toxicity of 4-nonylphenol to medaka (Oryzias latipes). Environ Toxicol Chem 20:2552–2560

    Article  CAS  Google Scholar 

  • Zou E (2005) Impacts of xenobiotics on crustacean molting: the invisible endocrine disruption. Integr Comp Biol 45:33–38

    Article  CAS  Google Scholar 

  • Zou E, Fingerman M (1997) Effects of estrogenic xenobiotics on molting of the water flea, Daphnia magna. Ecotoxicol Environ Saf 38:281–285

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of China-Guangdong Province Joint Key Project (U1133003), and the Natural Science Foundation of China (41176104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-shan Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Xl., Sun, Zw., Wang, Jj. et al. Sublethal Toxic Effects of Nonylphenol Ethoxylate and Nonylphenol to Moina macrocopa . Bull Environ Contam Toxicol 93, 204–208 (2014). https://doi.org/10.1007/s00128-014-1310-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-014-1310-x

Keywords

Navigation