Skip to main content
Log in

Variation of molybdenum isotopes in molybdenite from porphyry and vein Mo deposits in the Gangdese metallogenic belt, Tibetan plateau and its implications

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

We present Mo isotopic ratios of molybdenite from five porphyry molybdenum deposits (Chagele, Sharang, Jiru, Qulong, and Zhuonuo) and one quartz-molybdenite vein-type deposit (Jigongcun) along the Gangdese metallogenic belt in the Tibetan Plateau. These deposits represent a sequence of consecutive events of the India-Asia collision at different periods. Additional molybdenite samples from the Henderson Mo deposit (USA), the oceanic subduction-related El Teniente (Chile), and Bingham (USA) porphyry Cu-(Mo) deposits were analyzed for better understanding the controls on the Mo isotope systematics of molybdenite. The results show that molybdenite from Sharang, Jiru, Qulong, and Zhuonuo deposits have similar δ97Mo (∼0 ‰), in agreement with the values of the Henderson Mo deposit (−0.10 ‰). In contrast, samples from the Changle and Jigongcun deposit have δ97Mo of 0.85 ‰ to 0.88 ‰ and −0.48 %, respectively. Molybdenite from the El Teniente and Bingham deposits yields intermediate δ97Mo of 0.27 and 0.46 ‰, respectively. The Mo isotopes, combined with Nd isotope data of the ore-bearing porphyries, indicate that source of the ore-related magmas has fundamental effects on the Mo isotopic compositions of molybdenite. Our study indicates that molybdenite related to crustal-, and mantle-derived magmas has positive or negative δ97Mo values, respectively, whereas molybdenite from porphyries formed by crust-mantle mixing has δ97Mo close to 0 ‰. It is concluded that the Mo isotope composition in the porphyry system is a huge source signature, without relation to the tectonic setting under which the porphyry deposits formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Archer C, Vance D (2008) The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nat Geosci 1:597–600

    Article  Google Scholar 

  • Arnold GL, Anbar AD, Barling J, Lyons TW (2004) Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304:87–90

    Article  Google Scholar 

  • Barling J, Arnold GL, Anbar AD (2001) Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet Sci Lett 193:447–457

    Article  Google Scholar 

  • Chu MF, Chung SL, Song B, Liu DY, O’Reilly SY, Pearson NJ (2006) Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 34:745–748

    Article  Google Scholar 

  • Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev 68:173–196

    Article  Google Scholar 

  • Cooke DR, Hollings P, Walshe JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100:801–818

    Article  Google Scholar 

  • Deino A, Keith JD (1997) Ages of volcanic and intrusive rocks in the Bingham mining district, Utah. Soc Econ Geol Guidebook Series 29:91–100

    Google Scholar 

  • Ding L, Kapp P, Zhong D, Deng WM (2003) Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction. J Petrol 44:1833–1865

    Article  Google Scholar 

  • Duan Y, Anbar AD, Arnold GL, Lyons TW, Gordon GW, Kendall B (2010) Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochim Cosmochim Acta 74:6655–6668

    Article  Google Scholar 

  • Gao SB, Zheng YY, Tian LM, Zhang Z, Qu WJ, Liu MY, Zheng HT, Zheng L, Zhu JH (2012) Geochronology of magmatic intrusions and mineralization of Chagele copper-lead-zinc deposit in Tibet and its implications. Earth Sci J China Univ Geosci 37:507–514 (in Chinese with English abstract)

    Google Scholar 

  • Geissman JW, Snee LW, Graaskamp GW, Carten RB, Geraghty EP (1992) Deformation and age of the Red Mountain intrusive system (Urad-Henderson molybdenum deposits), Colorado: evidence from paleomagnetic and 40Ar/39Ar data. Geol Soc Am Bull 104:1031–1047

    Article  Google Scholar 

  • Goldberg T, Gordon G, Izon G, Archer C, Pearce CR, McManus J, Anbar AD, Rehkämper M (2013) Resolution of inter-laboratory discrepancies in Mo isotope data: an intercalibration. J Anal Atom Spectrom 28:724–735

    Article  Google Scholar 

  • Hannah JL, Stein HJ, Wieser ME, de Laeter JR, Varner MD (2007) Molybdenum isotope variations in molybdenite: vapor transport and Rayleigh fractionation of Mo. Geology 35:703–706

    Article  Google Scholar 

  • Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF (2009) The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geol Rev 36:25–51

    Article  Google Scholar 

  • Hou ZQ, Zheng YC, Yang ZM, Rui ZY, Zhao ZD, Jiang SH, Qu XM, Sun QZ (2013) Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Miner Deposita 48:173–192

    Article  Google Scholar 

  • Hu YB, Liu JQ, Ling MX, Ding W, Liu Y, Zartman RE, Ma XF, Liu DY, Zhang CC, Sun SJ, Zhang LP, Wu K, Sun WD (2015) The formation of Qulong adakites and their relationship with porphyry copper deposit: geochemical constraints. Lithos 220–223:60–80

    Article  Google Scholar 

  • Lehmann B, Nägler TF, Holland HD, Wille M, Mao JW, Pan JY, Ma DS, Dulski P (2007) Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology 35:403–406

    Article  Google Scholar 

  • Maksaev V, Munizaga F, McWilliams M, Fanning M, Mathur R, Ruiz J, Zentilli M (2004) New chronology for El Teniente, Chilean Andes, from U/Pb, 40Ar/39Ar, Re/Os and fission-track dating: implications for the evolution of a supergiant porphyry Cu-Mo deposit. In: Sillitoe RH, Perello J, Vidal CE (eds) Andean metallogeny: new discoveries, concepts, and updates. SEG special publication 11. Society of Economic Geologists, White Plains, pp 15–54

    Google Scholar 

  • Malinovsky D, Hammarlund D, Ilyashuk B, Martinsson O, Gelting J (2007) Variations in the isotopic composition of molybdenum in freshwater lake systems. Chem Geol 236:181–198

    Article  Google Scholar 

  • Mao JW, Zhang ZC, Zhang ZH, Du AD (1999) Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance. Geochim Cosmochim Acta 63:1815–1818

    Article  Google Scholar 

  • Mathur R, Brantley S, Anbar A, Munizaga F, Maksaev V, Newberry R, Vervoot J, Hart G (2010) Variation of Mo isotopes from molybdenite in high-temperature hydrothermal ore deposits. Miner Deposita 45:43–50

    Article  Google Scholar 

  • Maughan DT, Keith JD, Christiansen EH, Pulsipher T, Hattori K, Evans NJ (2002) Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA. Miner Deposita 37:14–37

    Article  Google Scholar 

  • Meng XJ, Hou ZQ, Gao YF, Huang W, Qu XM, Qu WJ (2003) Re-Os dating for molybdenite from Qulong porphyry copper deposit in Gangdese metallogenic belt, Xizang and its metallogenic significance. Geol Rev 49:660–665 (in Chinese with English abstract)

    Google Scholar 

  • Pearce CR, Cohen AS, Coe AL, Burton KW (2008) Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic. Geology 36:231–234

    Article  Google Scholar 

  • Pearce CR, Burton KW, von Strandmann PA, James RH, Gislason SR (2010) Molybdenum isotope behaviour accompanying weathering and riverine transport in a basaltic terrain. Earth Planet Sci Lett 295:104–114

    Article  Google Scholar 

  • Pietruszka AJ, Walker RJ, Candela PA (2006) Determination of mass-dependent molybdenum isotopic variations by MC-ICP-MS: an evaluation of matrix effects. Chem Geol 225:121–136

    Article  Google Scholar 

  • Poulson-Brucker RL, McManus J, Severmann S, Berelson WM (2009) Molybdenum behavior during early diagenesis: insights from Mo isotopes. Geochem Geophys Geosyst 10:1–25

    Article  Google Scholar 

  • Redmond PB, Einaudi MT, Inan EE, Landtwing MR, Heinrich CA (2004) Copper deposition by fluid cooling in intrusion-centered systems: new insights from the Bingham porphyry ore deposit, Utah. Geology 32:217–220

    Article  Google Scholar 

  • Scheiderich K, Helz GR, Walker RJ (2010) Century-long record of Mo isotopic composition in sediments of a seasonally anoxic estuary (Chesapeake Bay). Earth Planet Sci Lett 289:189–197

    Article  Google Scholar 

  • Seedorff E, Dilles J, Proffett J, Einaudi M, Zurcher L, Stavast W, Johnson D, Barton M (2005) Porphyry deposits: characteristics and origin of hypogene features. Econ Geol 100th Ann 29:251–298

    Google Scholar 

  • Siebert C, Nägler TF, Kramers JD (2001) Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochem Geophys Geosyst 2 paper number 2000GC000124

  • Siebert C, Nägler TF, Blanckenburg FV, Kramers JD (2003) Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet Sci Lett 211:159–171

    Article  Google Scholar 

  • Siebert C, McManus J, Bice A, Poulson R, Berelson WM (2006) Molybdenum isotope signatures in continental margin marine sediments. Earth Planet Sci Lett 241:723–733

    Article  Google Scholar 

  • Sinclair WD (2007) Porphyry deposits. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. GAC Special Publication 5. Geological Association of Canada, St. John’s, pp 223–243

    Google Scholar 

  • Skewes MA, Stern CR (1994) Tectonic trigger for the formation of late Miocene Cu-rich breccia pipes in the Andes of central Chile. Geology 22:551–554

    Article  Google Scholar 

  • Skewes MA, Stern CR (1995) Genesis of the giant late Miocene to Pliocene copper deposits of central Chile in the context of Andean magmatic and tectonic evolution. Int Geol Rev 37:893–909

    Article  Google Scholar 

  • Stein HJ, Markey RJ, Morgan JW, Hannah JL, Scherstén A (2001) The remarkable Re–Os chronometer in molybdenite: how and why it works. Terra Nov. 13:479–486

    Article  Google Scholar 

  • Tang JX, Chen YC, Wang DH, Wang CH, Xu YP, Qu WJ, Huang W, Huang Y (2009) Re-Os dating of molybdenite from the Sharang porphyry molybdenum deposit in Gongboyamda county, Tibet and its geological significance. Acta Geol Sin 83:698–704 (in Chinese with English abstract)

    Article  Google Scholar 

  • Wang LL, Mo XX, Li B, Dong GC, Zhao ZD (2006) Geochronology and geochemistry of the ore-bearing porphyry in Qulong Cu (Mo) ore deposit, Tibet. Acta Petrol Sin 22:1001–1008 (in Chinese with English abstract)

    Google Scholar 

  • Wang BD, Guo L, Wang LQ, Li B, Huang HX, Chen FQ, Duan ZM, Zeng QG (2012) Geochronology and petrogenesis of the ore-bearing pluton in Chagele deposit in middle of the Gangdese metallogenic belt. Acta Petrol Sin 28:1647–1662 (in Chinese with English abstract)

    Google Scholar 

  • Wen HJ, Carignan J, Cloquet C, Zhu XK, Zhang YX (2010) Isotopic delta values of molybdenum standard reference and prepared solutions measured by MC-ICP-MS: proposition for delta zero and secondary references. J Anal Atom Spectrom 25:716–721

    Article  Google Scholar 

  • Wille M, Kramers JD, Nägler TF, Beukes NJ, Schröder S, Meisel T, Lacassie JP, Voegelin AR (2007) Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim Cosmochim Acta 71:2417–2435

    Article  Google Scholar 

  • Xiao B, Qin KZ, Li GM, Li JX, Xia DX, Chen L, Zhao JX (2011) Highly oxidized magma and fluid evolution of Miocene Qulong giant porphyry Cu-Mo deposit, southern Tibet, China. Resour Geol 62:4–18

    Article  Google Scholar 

  • Xu LG, Lehmann B, Mao JW, Nägler TF, Neubert N, Böttcher ME, Escher P (2012) Mo isotope and trace element patterns of Lower Cambrian black shales in South China: multi-proxy constraints on the paleoenvironment. Chem Geol 318–319:45–59

    Article  Google Scholar 

  • Xu LG, Lehmann B, Mao JW (2013) Seawater contribution to polymetallic Ni–Mo–PGE–Au mineralization in Early Cambrian black shales of South China: evidence from Mo isotope, PGE, trace element, and REE geochemistry. Ore Geol Rev 52:66–84

    Article  Google Scholar 

  • Yang ZM, Hou ZQ, White NC, Chang ZS, Li ZQ, Song YC (2009) Geology of post-collisional porphyry copper-molybdenum deposit at Qulong, Tibet. Ore Geol Rev 36:133–159

    Article  Google Scholar 

  • Yin A, Harrion TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Zhang GY, Zheng YY, Gong FZ, Gao SB, Qu WJ, Pang YC, Shi YR, Yin SY (2008) Geochronologic constraints on magmatic intrusions and minerlization of the Jiru porphyry copper deposit, Tibet, associated with continent-collisional process. Acta Petrol Sin 24:473–479 (in Chinese with English abstract)

    Article  Google Scholar 

  • Zhang SK, Zheng YY, Zhang GY, Gao SB, Sun X, Yu M, Guo JW, Xu J (2013) Geochronological constraints on Jigongcun quartz-vein type molybdenum deposit in Quxu county, Tibet. Miner Deposits 32:641–648 (in Chinese with English abstract)

    Google Scholar 

  • Zhao JX, Qin KZ, Li GM, Li JX, Xiao B, Chen L (2012) Geochemistry and petrogenesis of Granitoids at Sharang Eocene Porphyry Mo deposit in the main-stage of India-Asia continental collision, Northern Gangdese, Tibet. Resour Geol 62:84–98

    Article  Google Scholar 

  • Zhao JX, Qin KZ, Li GM, Jin LY, Xiao B, Chen L, Yang YH, Li C, Liu YS (2014) Collision-related genesis of the Sharang porphyry molybdenum deposits, Tibet: evidence from zircon U-Pb ages, Re-Os ages and Lu-Hf isotopes. Ore Geol Rev 56:312–326

    Article  Google Scholar 

  • Zhao JX, Qin KZ, Li GM, Cao MJ, Evans NJ, Mclnnes BA, Li JX, Xiao B, Chen L (2015) The exhumation history of collision-related mineralizing systems in Tibet: insights from thermal studies of the Sharang and Yaguila deposits, Central Lhasa. Ore Geol Rev 65:1043–1061

    Article  Google Scholar 

  • Zheng YY, Zhang GY, Xu RK, Gao SB, Pang YC, Cao L, Du AD, Shi YR (2007) Geochronologic constraints on magmatic intrusions and mineralization of the Zhunuo porphyry copper deposit in Gangdese, Tibet. Chin Sci Bull 52:3139–3147

    Article  Google Scholar 

  • Zheng YY, Sun X, Gao SB, Zhao ZD, Zhang GY, Wu S, You ZM, Li JD (2014) Multiple mineralization events at Jiru porphyry copper deposit, southern Tibet: implications for Eocene and Miocene magma sources and resource potential. J Asian Earth Sci 79:842–857

    Article  Google Scholar 

  • Zhou L, Wignall PB, Su J, Feng QL, Xie SC, Zhao LS, Huang JH (2012) U/Mo ratios and δ98/95Mo as local and global redox proxies during mass extinction events. Chem Geol 324–325:99–107

    Article  Google Scholar 

  • Zhou L, Algeo TJ, Shen J, Hu ZF, Gong HM, Xie SC, Huang JH, Gao S (2015) Changs in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation. Palaeogeogr Palaeoclimatol Palaeoecol. doi:10.1016/j.palaeo.2014.12.012

    Google Scholar 

  • Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Liu YS, Wu FY (2009) Geochemical investigation of Early Cretaceous igneous rocks along an east–west traverse throughout the central Lhasa Terrane, Tibet. Chem Geol 268:298–312

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY (2011) The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett 301:241–255

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Yunxing Xue from the Department of Geology, Australian National University, and Prof. Zheng Youye from China University of Geosciences for their invaluable help in sample collection and associated fieldwork. We thank Georges Beaudoin (Editor-in-Chief) and Rolf Romer (Associate editor) for editorial handling and an anonymous reviewer for his/her reviews which considerably improved an earlier version of this manuscript. This study has been supported financially by the National Natural Science Foundation of China (nos. 41073007, 41273005, 41473007), the Ministry of Education of China (IRT0441 and B07039), and the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian Zhou.

Additional information

Editorial handling: R.L. Romer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, L., Gao, S. et al. Variation of molybdenum isotopes in molybdenite from porphyry and vein Mo deposits in the Gangdese metallogenic belt, Tibetan plateau and its implications. Miner Deposita 51, 201–210 (2016). https://doi.org/10.1007/s00126-015-0602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-015-0602-3

Keywords

Navigation