Skip to main content
Log in

Refinement of the time-space evolution of the giant Mio-Pliocene Río Blanco-Los Bronces porphyry Cu–Mo cluster, Central Chile: new U–Pb (SHRIMP II) and Re–Os geochronology and 40Ar/39Ar thermochronology data

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Representing one of the largest known (estimated >5 Gt at 1 % Cu and 0.02 % Mo) porphyry system, the Río Blanco-Los Bronces deposit incorporates at least five hypabyssal intrusive and hydrothermal centres, extending for about 5 km from the Río Blanco and Los Bronces mines in the north, through the Don Luis mine, to the Sur Sur mine, La Americana and Los Sulfatos in the south. The new geochronology data, which now include data on different molybdenite vein types, confirm the U–Pb ages of the pre-mineralisation intrusions but slightly increase their age range from 8.8 to 8.2 Ma. The distinct magmatic pulses of the mineralisation-associated porphyritic intrusives (Late Porphyries) indicate an age interval instead of the previously suggested individual ages: the quartz monzonite porphyry ranges from 7.7 to 6.1 Ma (Sur Sur 5.74 ± 0.13 Ma), the feldspar porphyry shows an interval from 5.8 to 5.2 Ma and the Don Luis porphyry from 5.2 to 5.0 Ma. The new Re–Os data on distinct molybdenite vein types confirm the protracted history of Cu(–Mo) mineralisation, inferred previously. The vein development occurred at least from 5.94 to 4.50 Ma, indicating a time-span of 1.5 Ma for the hydrothermal activity. Hydrothermal minerals dated by the 40Ar/39Ar method are generally too young to record the age of early, high-temperature mineralisation. The majority of the 40Ar/39Ar data in the Río Blanco porphyry cluster record reheating by either the youngest member of the Late Porphyry suite or the post-mineralisation dacite or rhyolite plug formations at around 4.9–4.7 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bertens A, Deckart K, Gonzalez A (2003) Geocronología U–Pb, Re–Os, y 40Ar/39Ar del pórfido Cu–Mo Los Pelambres, Chile Central. X. Congreso Geológico Chileno, Concepción, 2003 (CD-ROM): 5

  • Cannell J, Cooke DR, Walshe JL, Stein H (2005) Geology, mineralization, alteration, and structural evolution of the El Teniente porphyry Cu–Mo deposit. Econ Geol 100:979–1003

    Article  Google Scholar 

  • Charrier R, Baeza O, Elgueta S, Flynn JJ, Gans P, Kay SM, Muñoz N, Wyss AR, Zurita E (2002) Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33–36° S.L.). J S Am Earth Sci 15:117–139

    Article  Google Scholar 

  • Chesley JT (1999) Integrative geochronology of ore deposits: New insights into the duration and timing of hydrothermal circulation. In: Lambert DD, Ruiz J (eds) Application of radiogenic isotopes to ore deposit research and exploration. Rev Econ Geol 12: 115–141

  • Clark AH (1993) Are outsize porphyry copper deposits either anatomically or environmentally distinct? In: Whiting BH, Hodgson CJ, Mason R (eds) Giant ore deposits. Soc Econ Geol Spec Publ 2: 213–283

  • Creaser RA, Erdmer P, Stevens RA, Grant SL (1993) Tectonic affinity of Nisutlin and Anvil assemblage strata from the Teslin Tectonic Zone, northern Canadian Cordillera: constraints from neodymium isotope and geochemical evidence. Tectonics 16:107–121

    Article  Google Scholar 

  • Deckart K, Clark AH, Aguilar C, Vargas R, Bertens A, Mortensen J, Fanning M (2005) Magmatic and hydrothermal chronology of the giant Río Blanco porphyry copper deposit, Central Chile: implications of an integrated U–Pb and 40Ar–39Ar database. Econ Geol 100:905–934

    Article  Google Scholar 

  • Deckart K, Godoy E, Bertens A, Jeréz D, Saeed A (2010) Barren Miocene granitoids in the Central Andean metallogenic belt, Chile: geochemistry and Nd–Hf and U–Pb isotope systematics. Andean Geol 37:1–31

    Google Scholar 

  • Dilles JH, Einaudi MT (1992) Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit—a 6-km vertical reconstruction. Econ Geol 87:1963–2001

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Article  Google Scholar 

  • Frikken PH, Cooke DR, Walshe JL, Archibald D, Skarmeta J, Serrano L, Vargas R (2005) Mineralogical and isotopic zonation in the Sur-Sur tourmaline breccia, Río Blanco-Los Bronces Cu–Mo deposit, Chile—implications for ore genesis. Econ Geol 100:935–961

    Article  Google Scholar 

  • Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El Salvador, Chile. Econ Geol 70:857–912

    Article  Google Scholar 

  • Gustafson LB, Quiroga J (1995) Patterns of mineralization and alteration below the porphyry copper orebody at E1 Salvador, Chile. Econ Geol 90:2–16

    Article  Google Scholar 

  • Harrison TM, McDougall I (1982) The thermal significance of potassium feldspar K–Ar ages inferred from 40Ar/39Ar age spectrum results. Geochim Cosmochim Acta 46:1811–1820

    Article  Google Scholar 

  • Kay SM, Mpodozis C (2001) Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. Geol Soc Am (GSA) Today 11(3):4–9

    Google Scholar 

  • Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol Soc Am Bull 117:67–88

    Article  Google Scholar 

  • Le Roux JP, Gomez CA, Olivares DM, Middleton H (2005) Determining the Neogene behavior of the Nazca plate by geohistory analysis. Geology 33:165–168

    Article  Google Scholar 

  • Le Roux JP, Olivares DM, Nielsen SN, Smith ND, Middleton H, Fenner F, Ishman SE (2006) Bay sedimentation as controlled by regional crustal behaviour, local tectonics and eustatic sea-level changes: Coquimbo Formation (Miocene–Pliocene), Bay of Tongoy, central Chile. Sed Geol 184:133–153

    Article  Google Scholar 

  • Ludwig KR (1999) User’s manual for Isoplot/Ex, Version 2.10, A geochronological toolkit for Microsoft Excel: Berkeley Geochronology Center. Spec Publ 1a

  • Ludwig KR (2000) SQUID 1.00, A user’s manual. Berkeley Geochronology Center, Spec Publ 2.

  • Maksaev V, Munizaga F, McWilliams M, Mathur R, Ruiz J, Zentilli M (2004) New chronology for El Teniente, Chilean Andes, from U–Pb, 40Ar/39Ar, Re–Os, and fission-track dating: Implications for the evolution of a supergiant porphyry Cu–Mo deposit. Soc Econ Geol Spec Publ 11:15–54

    Google Scholar 

  • Masterman GJ, Cooke DR, Berry RF, Walshe JL, Lee AW, Clark AH (2005) Fluid chemistry, structural setting, and emplacement history of the Rosario Cu–Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi district, northern Chile. Econ Geol 100:835–862

    Article  Google Scholar 

  • Mathur R, Ruiz JR, Munizaga FM (2001) Insights into Andean metallogenesis from the perspective of Re–Os analyses of sulphides. South American Isotope Conference, (CD-ROM). SERNAGEOMIN, Chile, p 4

    Google Scholar 

  • Mining Journal (2009) Anglo unveils major new deposits. Exploration & Development. The Mining Industry’s Weekly Newspaper Online 07/08/2009: p 3

  • Nägler T, Frei R (1997) ‘Plug-in’ Os distillation. Schweiz Mineral Petrogr Mitt 77:123–127

    Google Scholar 

  • Paces JB, Miller JD (1993) Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic process associated with the 1.1 Ga Midcontinent Rift System. J Geophys Res 98:13,997–14,013

    Article  Google Scholar 

  • Quirt GS (1972) A potassium-argon geochronological investigation of the Andean mobile belt of north-central Chile. Unpublished Ph.D. thesis, Queens' University, Kingston, Ontario, Canada, 240 pp

  • Quirt GS, Clark AH, Farrar E, Sillitoe RH (1971) Potassium-argon ages of porphyry copper deposits in northern and central Chile. Econ Geol 67:980–981

    Google Scholar 

  • Rivano S, Godoy E, Vergara M, Villarroel R (1990) Redefinición de la Formación Farellones en la Cordillera de los Andes de Chile Central (32–34° S). Rev Geol Chile 17(2):205–214

    Google Scholar 

  • Serrano L, Vargas R, Stambuk V, Aguilar C, Galeb M, Holmgren C, Contreras A, Godoy S, Vela L, Skewes MA, Stern CR (1996) The Late Miocene to early Pliocene Río Blanco-Los Bronces copper deposit, central Chilean Andes. In: Camus F, Sillitoe RH, Petersen R (eds) Andean copper deposits: new discoveries, mineralization, styles and metallogeny. Soc Econ Geol, Spec Publ 5: 119–130

  • Shirey SB, Walker RJ (1995) Carius tube digestion for low-blank rhenium-osmium analysis. Anal Chem 67:2136–2141

    Article  Google Scholar 

  • Skewes MA, Stern CR (1994) Tectonic trigger for the formation of Late Miocene Cu-rich breccias pipes in the Andes of central Chile. Geology 22:551–554

    Article  Google Scholar 

  • Skewes MA, Arévalo A, Floody R, Zúñiga H, Stern CR (2002) The giant El Teniente breccia deposit: hypogene copper distribution and emplacement. Soc Econ Geol Spec Publ 9:299–332

    Google Scholar 

  • Skewes MA, Arévalo A, Floody R, Zúñgiga P, Stern CR (2005) The El Teniente megabreccia deposit, the world’s largest copper deposit. In: Porter TM (ed) Super porphyry copper & gold deposits—a global perspective. PGC Publishing, Adelaide, Australia, pp 83–114

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcomission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Stern CR, Skewes MA (2005) Origin of giant Miocene and Pliocene Cu–Mo deposits in central Chile: role of ridge subduction, decreased subduction angle, subduction erosion, crustal thickening and long-lived, batholith sized, open-system magma chambers. In: Porter TM (ed) Super porphyry copper & gold deposits—a global perspective. PGC Publishing, Adelaide, Australia, pp 65–82

    Google Scholar 

  • Suzuki K, Shimizu H, Masuda A (1996) Re–Os dating of molybdenites from ore deposits in Japan; implication for closure temperature of Re–Os system for molybdenite and cooling history of molybdenum ore deposits. Geochim Cosmochim Acta 60:3151–3159

    Article  Google Scholar 

  • Tera F, Wasserburg GJ (1972) U-Th-Pb systematic in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet Sci Lett 14:281–304

    Article  Google Scholar 

  • Warnaars FW, Holmgrem C, Barassi S (1985) Porphyry copper and tourmaline breccias at Los Bronces-Río Blanco, Chile. Econ Geol 80:1544–1565

    Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks III WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7: 1–35

  • Yañez G, Cembrano J, Pardo M, Ranero C, Selles D (2002) The Challenger–Juan Fernández–Maipo major tectonic transition of the Nazca–Andean subduction system at 33–34°: geodynamic evidence and implications. J S Am Earth Sci 15:23–38

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Andina Division of CODELCO-Chile for funding the second geochronological project and permitting publication of the data. Special thanks go to Luis Serrano, former Administrator of Exploration and Mineral Resources, for supporting this investigation, and mine geologists Humberto Ortega, Augusto Mont, Nicolas Pizarro and Francisco Fuentes for their stimulating discussions. At Oregon State University, Robert Duncan and at Arizona University, Fernando Barra, carried out analytical 40Ar/39Ar and Re–Os work, respectively. Juan Vargas is thanked for mineral separation in the facilities of the Geology Department, Universidad de Chile. We would like to thank reviewers Thomas Bissig, Richard Tosdal and Regina Baumgartner for their helpful comments on the earlier version of the manuscript. Parts of the U–Pb and 40Ar/39Ar geochronological analyses were financed through the Chilean grant DID-I-04-2/2001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Deckart.

Additional information

Editorial handling: T. Bissig

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 26 kb)

ESM 2

(XLS 196 kb)

ESM 3

(DOC 35 kb)

ESM 4

(DOC 1174 kb)

ESM 5

(DOC 46 kb)

ESM 6

(DOC 41 kb)

ESM 7

(DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deckart, K., Clark, A.H., Cuadra, P. et al. Refinement of the time-space evolution of the giant Mio-Pliocene Río Blanco-Los Bronces porphyry Cu–Mo cluster, Central Chile: new U–Pb (SHRIMP II) and Re–Os geochronology and 40Ar/39Ar thermochronology data. Miner Deposita 48, 57–79 (2013). https://doi.org/10.1007/s00126-012-0412-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-012-0412-9

Keywords

Navigation