Skip to main content
Log in

Identification and characterization of a fast-neutron-induced mutant with elevated seed protein content in soybean

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Protein content of soybean is critical for utility of soybean meal. A fast-neutron-induced deletion on chromosome 12 was found to be associated with increased protein content.

Abstract

Soybean seed composition affects the utility of soybean, and improving seed composition is an essential breeding goal. Fast neutron radiation introduces genomic mutations resulting in novel variation for traits of interest. Two elite soybean lines were irradiated with fast neutrons and screened for altered seed composition. Twenty-three lines with altered protein, oil, or sucrose content were selected based on near-infrared spectroscopy data from five environments and yield tested at five locations. Mutants with significantly increased protein averaged 19.1–36.8 g kg−1 more protein than the parents across 10 environments. Comparative genomic hybridization (CGH) identified putative mutations in a mutant, G15FN-12, that has 36.8 g kg−1 higher protein than the parent genotype, and whole genome sequencing (WGS) of the mutant has confirmed these mutations. An F2:3 population was developed from G15FN-12 to determine association between genomic changes and increased protein content. Bulked segregant analysis of the population using the SoySNP50K BeadChip identified a CGH- and WGS-confirmed deletion on chromosome 12 to be responsible for elevated protein content. The population was genotyped using a KASP marker designed at the mutation region, and significant association (P < 0.0001) between the deletion on chromosome 12 and elevated protein content was observed and confirmed in the F3:4 generation. The F2 segregants homozygous for the deletion averaged 27 g kg−1 higher seed protein and 8 g kg−1 lower oil than homozygous wild-type segregants. Mutants with altered seed composition are a new resource for gene function studies and provide elite materials for genetic improvement of seed composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAM:

Binary alignment map

BLAST:

Basic local alignment search tool

BLUP:

Best linear unbiased predictor

BSA:

Bulked segregant analysis

BWA:

Burrows-Wheeler aligner

CGH:

Comparative genomic hybridization

CNV:

Copy number variation

CRISPR:

Clustered regularly interspaced short palindromic repeats

FN:

Fast neutron

GWAS:

Genome-wide association study

IGV:

Integrative Genomics Viewer

KASP:

Kompetitive allele specific PCR

MG:

Maturity Group

NIL:

Near-isogenic line

NIR:

Near-infrared

PCR:

Polymerase chain reaction

PI:

Plant introduction

QTL:

Quantitative trait locus

RFO:

Raffinose family of oligosaccharides

RIL:

Recombinant inbred line

RT-PCR:

Reverse transcription polymerase chain reaction

SAM:

Sequence alignment/map format

SNP:

Single nucleotide polymorphism

WGS:

Whole genome sequencing

References

  • Anderson JE, Michno J-M, Kono TJY, Stec AO, Campbell BW, Curtin SJ, Stupar RM (2016) Genomic variation and DNA repair associated with soybean transgenesis: a comparison to cultivars and mutagenized plants. BMC Biotechnol 16:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews S (2014) FastQC a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  • Bandillo N, Jarquin D, Song Q, Nelson R, Cregan P, Specht J, Lorenz A (2015) A population structure and genome-wide association analysis on the usda soybean germplasm collection. Plant Genome 8

  • Barthelson R (2014a) HTProcess_trimmomatic_0.32. rogerab. CyVerse https://de.cyverse.org/de/?type=apps&app-id=93820714-89b7-4008-a9d1-98cb35ae3b09&system-id=de

  • Barthelson R (2014b) HTProcess-prepare_directories-and-run_fastqc-0.1. rogerab. CyVerse. https://de.cyverse.org/de/?type=apps&app-id=b4d15ab5-81b6-47e1-8637-26824e1f1679&system-id=de

  • Barthelson R (2016) SAM-to-sorted-BAM. rogerab. CyVerse. https://pods.iplantcollaborative.org/wiki/display/DEapps/Convert+SAM-to-sorted-BAM

  • Belfield E, Gan X, Mithani A, Brown C, Jiang C, Franklin K, Alvey E, Wibowo A, Jung M, Bailey K, Kalwani S, Ragoussis J, Mott R, Harberd N (2012) Genome-wide analysis of mutations in mutant lineages selected following fast-neutron irradiation mutagenesis of Arabidopsis thaliana. Genome Res 22:1306–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerma HR, Hussey RS, Phillips DV, Wood ED, Rowan GB, Finnerty SL (1997) Registration of ‘Benning’ soybean. Crop Sci 37:1982

    Article  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform 30(15):2114–2120

    Article  CAS  Google Scholar 

  • Bolon Y-T, Haun WJ, Xu WW, Grant D, Stacey MG, Nelson RT, Gerhardt DJ, Jeddeloh JA, Stacey G, Muehlbauer GJ, Orf JH, Naeve SL, Stupar RM, Vance CP (2011) Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiol 156:240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolon Y-T, Stec AO, Michno J-M, Roessler J, Bhaskar PB, Ries L, Dobbels AA, Campbell BW, Young NP, Anderson JE, Grant DM, Orf JH, Naeve SL, Muehlbauer GJ, Vance CP, Stupar RM (2014) Genome resilience and prevalence of segmental duplications following fast neutron irradiation of soybean. Genetics 198:967–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummer EC, Graef GL, Orf J, Wilcox JR, Shoemaker RC (1997) Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci 37:370–378

    Article  Google Scholar 

  • Brzostowski LF, Diers BW (2017) Agronomic evaluation of a high protein allele from PI407788A on chromosome 15 across two soybean backgrounds. Crop Sci 57:2972–2978

    Article  CAS  Google Scholar 

  • Brzostowski LF, Pruski T, Specht JE, Diers BW (2017) Impact of seed protein alleles from three soybean sources on seed composition and agronomic traits. Theor Appl Genet 130:2315–2326

    Article  CAS  PubMed  Google Scholar 

  • Burton JW (1987) Quantitative genetics: results relevant to soybean breeding. In: Wilcox JR (ed) Soybeans: improvement, production and uses, 2nd edn. ASA, CSSA, and SSSA, Madison

    Google Scholar 

  • Campbell BW, Hofstad AN, Sreekanta S, Fu F, Kono TJY, O’Rourke JA, Vance CP, Muehlbauer GJ, Stupar RM (2016) Fast neutron-induced structural rearrangements at a soybean NAP1 locus result in gnarled trichomes. Theor Appl Genet 129:1725–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung J, Babka HL, Graef GL, Staswick PE, Lee DJ (2003) The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci 43:1053–1067

    Article  CAS  Google Scholar 

  • Cober ER, Voldeng HD (2000) Developing high-protein, high-yield soybean populations and lines. Crop Sci 40:39–42

    Article  Google Scholar 

  • Cooksey A (2017) BWA mem_longreads-0.7.15. Upendra Devisetty. CyVerse. https://de.cyverse.org/de/?type=apps&app-id=e813971a-7d2d-11e7-9247-008cfa5ae621&system-id=de

  • DeBolt S (2010) Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales. Genome Biol Evol 2:441–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devisetty UK (2016a) BWA mem 0.7.15. Upendra Devisetty. CyVerse. https://de.cyverse.org/de/?type=apps&app-id=4c7e942e-6408-11e6-a1f5-008cfa5ae621&system-id=de

  • Devisetty UK (2016b) SAM_to_Sorted_BAM-0.1.19 (app for workflows). Upendra Kumar Devisetty. CyVerse. https://de.cyverse.org/de/?type=apps&app-id=9b837c54-122f-11e6-98c7-dfa2ad9d9ddd&system-id=de

  • Diers BW, Keim P, Fehr WR, Shoemaker RC (1992) RFLP analysis of soybean seed protein and oil content. Theor Appl Genet 83:608–612

    Article  CAS  PubMed  Google Scholar 

  • Dobbels AA, Michno J-M, Campbell BW, Virdi KS, Stec AO, Muehlbauer GJ, Naeve SL, Stupar RM (2017) An induced chromosomal translocation in soybean disrupts a KASI ortholog and is associated with a high-sucrose and low-oil seed phenotype. G3 Genes Genomes Genet 7:1215–1223

    CAS  Google Scholar 

  • Eskandari M, Cober E, Rajcan I (2013) Genetic control of soybean seed oil: II QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor Appl Genet 126(6):1677–1687

    Article  CAS  PubMed  Google Scholar 

  • Fehr WR, Caviness CE (1977) Stages of soybean development. Special Report. 87. https://lib.dr.iastate.edu/specialreports/87/

  • Glenn TC, Nilsen RA, Kieran TJ, Finger JW Jr, Pierson TW, Bentley KE, Hoffberg SL, Louha S, García-De León FJ, Del Rio Portilla MA, Reed KD, Anderson JL, Meece JK, Aggrey SE, Rekaya R, Alabady M, Bélanger M, Winker K, Faircloth BC (2016) Adapterama I: universal stubs and primers for thousands of dual-indexed Illumina libraries (iTru & iNext). BioRxiv. https://doi.org/10.1101/049114

    Article  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40((Database issue)):D1178–D1186. https://doi.org/10.1093/nar/gkr944

    Article  CAS  PubMed  Google Scholar 

  • Grant D, Nelson RT, Cannon SB, Shoemaker RC (2010) SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res 38(suppl 1):D843–D846. https://doi.org/10.1093/nar/gkp798

    Article  CAS  PubMed  Google Scholar 

  • Hartwig EE, Hinson K (1972) Association between chemical composition of seed and seed yield of soybeans. Crop Sci 12:829–830

    Article  CAS  Google Scholar 

  • Haun WJ, Hyten DL, Xu WW, Gerhardt DJ, Albert TJ, Richmond T, Jeddeloh JA, Jia G, Springer NM, Vance CP, Stupar RM (2011) The composition and origins of genomic variation among individuals of the soybean reference cultivar Williams 82. Plant Physiol 155:645–655

    Article  CAS  PubMed  Google Scholar 

  • Herman EM (2014) Soybean seed proteome rebalancing. Front Plant Sci 5(437):1–8

    Google Scholar 

  • Hwang E-Y, Qijian S, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genom 15:1–25

    Article  CAS  Google Scholar 

  • Hwang W, Kim M, Kang Y, Shim S, Stacey M, Stacey G, Lee S-H (2015) Genome-wide analysis of mutations in a dwarf soybean mutant induced by fast neutron bombardment. Euphytica 203:399–408

    Article  Google Scholar 

  • Hymowitz T, Collins FI, Walker WM, Panczner J (1972) Relationship between content of oil, protein, and sugar in soybean seed. Agron J 64:613

    Article  CAS  Google Scholar 

  • Jaureguy LM, Chen P, Scaboo AM (2011) Heritability and correlations among food-grade traits in soybean. Plant Breed 130:647–652

    Article  Google Scholar 

  • Kabelka EA, Diers BW, Fehr WR, LeRoy AR, Baianu IC, You T, Neece DJ, Nelson RL (2004) Putative alleles for increased yield from soybean plant introductions. Crop Sci 44(3):784–791

    Article  Google Scholar 

  • Keim P, Olson TC, Shoemaker RC (1988) A rapid protocol for isolating soybean DNA. Soybean Genet Newsl 18:150–152

    Google Scholar 

  • Kim HK, Kang ST, Oh KW (2006) Mapping of putative quantitative trait loci controlling the total oligosaccharide and sucrose content of Glycine max seeds. J Plant Res 119:533–538

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Schultz S, Nelson RL, Diers BW (2016) Identification and fine mapping of a soybean seed protein QTL from PI 407788A on chromosome 15. Crop Sci 56(1):219–225. https://doi.org/10.2135/cropsci2015.06.0340

    Article  CAS  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2016). lmerTest: tests in linear mixed effects models. R package version 2.0-33. https://CRAN.R-project.org/package=lmerTest

  • Lee SH, Bailey MA, Mian MAR, Carter TE Jr, Shipe ER, Ashley DA, Parrott WA, Hussey RS, Boerma HR (1996) RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor Appl Genet 93(5–6):649–657

    Article  CAS  PubMed  Google Scholar 

  • Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinform 27(21):2987–2993

    Article  CAS  Google Scholar 

  • Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997v2 (q-bio.GN)

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinform 25:1754–1760

    Article  CAS  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinform 25:2078–2079

    Article  CAS  Google Scholar 

  • Liang H, Yu Y, Wang S, Lian Y, Wang T, Wei Y, Gong P, Liu X, Fang X, Zhang M (2010) QTL Mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agric Sci China 9(8):1108–1116

    Article  CAS  Google Scholar 

  • Lu W, Wen Z, Li H, Yuan D, Li J, Zhang H, Huang Z, Cui S, Du W (2013) Identification of the quantitative trait loci (QTL) underlying water soluble protein content in soybean. Theor Appl Genet 126:425–433

    Article  CAS  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12. https://doi.org/10.14806/ej.17.1.200

    Article  Google Scholar 

  • Mian R, McHale L, Li Z, Dorrance AE (2017) Registration of ‘HighPro1’ soybean with high protein and high yield developed from a north x south cross. J Plant Reg 11:51–54

    Article  Google Scholar 

  • Muñoz-Amatriaín M, Eichten SR, Wicker T, Richmond TA, Mascher M, Steuernagel B, Scholz U, Ariyadasa R, Spannagl M, Nussbaumer T, Mayer KF, Taudien S, Platzer M, Jeddeloh JA, Springer JM, Muehlbauer GJ, Stein N (2013) Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome. Genome Biol 14(6):R58. https://doi.org/10.1186/gb-2013-14-6-r58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols DM, Glover KD, Carlson SR, Specht JE, Diers BW (2006) Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Sci 46:834–839

    Article  Google Scholar 

  • Patil G, Mian R, Vuong T, Pantalone V, Song Q, Chen P, Shannon G, Carter TE, Nguyen H (2017) Molecular mapping and genomics of soybean seed protein: a review and perspective for the future. Theor Appl Genet 130:1975–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham AT, McNally K, Abdel-Haleem H, Boerma HR, Li Z (2013) Fine mapping and identification of candidate genes controlling the resistance to southern root-knot nematode in PI 96354. Theor Appl Genet 126(7):1825–1838

    Article  CAS  PubMed  Google Scholar 

  • Phansak P, Soonsuwon W, Hyten DL, Song Q, Cregan PB, Graef GL, Specht JE (2016) Multi-population selective genotyping to identify soybean [Glycine max (L.) Merr.] seed protein and oil QTLs. G3 Genes Genomes Genet 6:1635–1648

    CAS  Google Scholar 

  • Prenger EM, Mian R, Buckley B, Boerma HR, Li Z (2018). Introgression of a high protein allele into an elite soybean variety results in a high-protein near-isogenic line with yield parity. Chapter 3. MS thesis, University of Georgia

  • Qi Z, Wu Q, Han X, Sun Y-n, Du X-y, Liu C-y, Jiang H-w, Hu G-h, Chen Q-s (2011a) Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica 179:499–514

    Article  Google Scholar 

  • Qi Z, Ya-nan S, Qiong W, Chun-yan L, Guo-hua H, Qing-shan C (2011b) A meta-analysis of seed protein concentration QTL in soybean. Can J Plant Sci 91:221–230

    Article  CAS  Google Scholar 

  • Qiu BX, Arelli PR, Sleper DA (1999) RFLP markers associated with soybean cyst nematode resistance and seed composition in a ‘Peking’ x ‘Essex’ population. Theor Appl Genet 98(3–4):356–364

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutz et al (2010) Genome sequence of the palaeopolyploid soybean. Nat 463:178–183

    Article  CAS  Google Scholar 

  • Sebolt AM, Shoemaker RC, Diers BW (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci 40:1438–1444

    Article  CAS  Google Scholar 

  • Severin AJ, Woody JL, Bolon Y-T, Joseph B, Diers BW, Farmer AD, Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB, May GD, Vance CP, Shoemaker RC (2010) RNA-seq atlas of glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50 K, a high-density genotyping array for soybean. PLoS ONE 8:e54985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Jenkins J, Jia G, Hyten DL, Pantalone V, Jackson SA, Schmutz J, Cregan PB (2016) Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genom 17:33

    Article  CAS  Google Scholar 

  • Springer NM, Ying K, Fu Y, Ji T, Yeh C-T, Jia Y, Wu W, Richmond T, Kitzman J, Rosenbaum H, Iniguez AL, Barbazuk WB, Jeddeloh JA, Nettleton D, Schnable PS (2009) Maize inbreds exhibit high levels of copy number variation (CNV) and presence/absence variation (PAV) in genome content. PLoS Genet 5(11):e1000734. https://doi.org/10.1371/journal.pgen.1000734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey MG, Cahoon RE, Nguyen HT, Cui Y, Sato S, Nguyen CT, Phoka N, Clark KM, Liang Y, Forrester J, Batek J, Do PT, Sleper DA, Clemente TE, Cahoon EB, Stacey G (2016) Identification of homogentisate dioxygenase as a target for vitamin E biofortification in oilseeds. Plant Physiol 172:1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng W, Li W, Zhang Q, Wu D, Zhao X, Li H, Han Y, Li W (2017) Identification of quantitative trait loci underlying seed protein content of soybean including main, epistatic, and QTL × environment effects in different regions of Northeast China. Genome 60(8):649–655. https://doi.org/10.1139/gen-2016-0189

    Article  CAS  PubMed  Google Scholar 

  • Thorne JC, Fehr WR (1970) Incorporation of high-protein, exotic germplasm into soybean populations by 2- and 3-way crosses. Crop Sci 10:652–655

    Article  Google Scholar 

  • Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  CAS  PubMed  Google Scholar 

  • Valliyodan B, Shi H, Nguyen HT (2015) A simple analytical method for high-throughput screening of major sugars from soybean by normal-phase HPLC with evaporative light scattering detection. Chromatogr Res Int 15:8

    Google Scholar 

  • van de Wiel CCM, Schaart JG, Lotz LAP, Smulders MJM (2017) New traits in crops produced by genome editing techniques based on deletions. Plant Biotechnol Rep 11:1–8. https://doi.org/10.1007/s11816-017-0425-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaughn M (2012) Uncompress files with gunzip. CyVerse http://www.gnu.org/software/gzip/

  • Vaughn JN, Nelson RL, Song Q, Cregan PB, Li Z (2014) The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations. G3 Genes Genomes Genet 4:2283–2294

    Google Scholar 

  • Walls R (2018) Concatenate multiple files. BusyBox. CyVerse. https://de.cyverse.org/de/?type=apps&app-id=77830f32-084a-11e8-a871-008cfa5ae621&system-id=de

  • Warrington CV, Abdel-Haleem H, Hyten DL, Cregan PB, Orf JH, Killam AS, Bajjalieh N, Li Z, Boerma HR (2015) QTL for seed protein and amino acids in the Benning × Danbaekkong soybean population. Theor Appl Genet 128:839–850

    Article  CAS  PubMed  Google Scholar 

  • Wilcox JR, Cavins JF (1995) Backcrossing high seed protein to a soybean cultivar. Crop Sci 35:1036–1041

    Article  Google Scholar 

  • Wilcox JR, Zhang GD (1997) Relationships between seed yield and seed protein in determinate and indeterminate soybean populations. Crop Sci 37:361–364

    Article  Google Scholar 

  • Wilson RF (2004) Seed composition. In: Boerma HR, Specht JE (eds) Soybean: improvement, production and uses, 3rd edn. ASA and CSSA, Madison, pp 671–677

    Google Scholar 

  • Yin XH, Vyn TJ (2005) Relationships of isoflavone, oil, and protein in seed with yield of soybean. Agron J 97:1314–1321

    Article  CAS  Google Scholar 

  • Yu P, Wang C, Xu Q, Feng Y, Yuan X, Yu H, Wang Y, Tang S, Wei X (2011) Detection of copy number variations in rice using array-based comparative genomic hybridization. BMC Genom 12:372. https://doi.org/10.1186/1471-2164-12-372

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the United Soybean Board and the John Ingle Innovation in Plant Breeding Award for funding this research. Thanks to Dale Wood, Earl Baxter, Brice Wilson, Jeremy Nation, Greg Gokalp, Ricky Zoller, Tatyana Nienow, Troy Kieran, and Swarnali Louha from University of Georgia, and Adrian Stec and Jean-Michel Michno from University of Minnesota for their technical support. Thanks to Blair Buckley for growing the yield trial at Bossier, LA. Thanks to Drs. Henry Nguyen and Tri Vuong from University of Missouri for analyzing the sugar content.

Author information

Authors and Affiliations

Authors

Contributions

EMP conducted the experiment, analyzed the data, and drafted the manuscript; RMS and TG conducted comparative genomic hybridization and whole genome sequencing, respectively; MARM performed field tests; AO conducted seed composition analysis; and ZL designed and organized the experiment, interpreted the results, and edited the manuscript.

Corresponding author

Correspondence to Zenglu Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Albrecht E. Melchinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 39 kb)

122_2019_3399_MOESM2_ESM.tif

Fig. S1. Protein differences among genotypes in the F3 Benning × G15FN-12 populationProtein content is reported in g kg-1 on a dry matter basis. P<.0001. An “n” indicates the number of F3 families measured for each corresponding genotype. (TIFF 60353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prenger, E.M., Ostezan, A., Mian, M.A.R. et al. Identification and characterization of a fast-neutron-induced mutant with elevated seed protein content in soybean. Theor Appl Genet 132, 2965–2983 (2019). https://doi.org/10.1007/s00122-019-03399-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03399-w

Keywords

Navigation