Skip to main content
Log in

QTL mapping identifies a major locus for resistance in wheat to Sunn pest (Eurygaster integriceps) feeding at the vegetative growth stage

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This research provides the first report of a major locus controlling wheat resistance to Sunn pest. It developed and validated SNP markers that will be useful for marker-assisted selection.

Abstract

Sunn pest (Eurygaster integriceps Puton) is the most destructive insect pest of bread wheat and durum wheat in West and Central Asia and East Europe. Breeding for resistance at the vegetative stage of growth is vital in reducing the damage caused by overwintered adult populations that feed on shoot and leaves of seedlings, and in reducing the next generation of pest populations (nymphs and adults), which can cause damage to grain quality by feeding on spikes. In the present study, two doubled haploid (DH) populations involving resistant landraces from Afghanistan were genotyped with the 90k SNP iSelect assay and candidate gene-based KASP markers. The DH lines and parents were phenotyped for resistance to Sunn pest feeding, using artificial infestation cages at Terbol station, in Lebanon, over three years. Quantitative trait locus (QTL) analysis identified a single major locus on chromosome 4BS in the two populations, with the resistance allele derived from the landrace accessions, IG139431 and IG139883. The QTL explained a maximum of 42 % of the phenotypic variation in the Cham6 × IG139431 and 56 % in the Cham6 × IG139883 populations. SNP markers closest to the QTL showed high similarity to rice genes that putatively encode proteins for defense response to herbivory and wounding. The markers were validated in a large, unrelated population of parental wheat genotypes. All wheat lines carrying the ‘C–G’ haplotype at the identified SNPs were resistant, suggesting that selection based on a haplotype of favourable alleles would be effective in predicting resistance status of unknown genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexandrescu S, Savu M, Hera E (1990) Resistance of some insect species to insecticides (in Romanian with English summary). Analele institutui de Cercetari Pentru Protectia, Plantelor Academia de Sitiinte Agricole si Silvice 23:229–244

    CAS  Google Scholar 

  • Bhullar NV, Street K, Mackay M, Yahiaoui N, Keller B (2009) Unlocking wheat genetic resources for the molecular identification of previously undescribed functional alleles at the Pm3 resistance locus. PNAS 106:9519–9524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Canhilal R, Kutuk H, Kanat AD, Islamoglu M, El-Haramein F, El-Bouhssini M (2005) Economic threshold for the Sunn Pest, Eurygaster integriceps Put. (Hemiptera: Scutelleridae), on wheat in South-eastern Turkey. J Agric Urban Entomol 22:191–201

    Google Scholar 

  • Critchely BR (1998) Literature review of sunn pest Eurygaster integriceps Puton. (Heteroptera:Scutelleridae). Crop Prot 17:271–287

    Article  Google Scholar 

  • Darkoh C, El Bouhssini M, Baum M, Clack B (2010) Characterization of a prolyl endoprotease from Eurygaster integriceps Puton (Sunn Pest) Infested Wheat. Arch Insect Biochem Physiol 74:163–178

    Article  CAS  PubMed  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  CAS  PubMed  Google Scholar 

  • Dmochowska-Boguta M, Alaba S, Yanushevska Y, Piechota U, Lasota E, Nadolska-Orczyk A, Karlowski WM, Orczyk W (2015) Pathogen-regulated genes in wheat isogenic lines differing in resistance to brown rust Puccinia triticina. BMC Genom 16:742

    Article  Google Scholar 

  • Doyle J, Doyle JL (1987) Genomic plant DNA preparation from fresh tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • El Bouhssini M, Ogbonnaya FC, Chen M, Lhaloui S, Rihawi F, Dabbous A (2013) Sources of resistance in primary synthetic hexaploid wheat (Triticum aestivum L.) to insect Pests—Hessian fly, Russian wheat aphid and Sunn pest in the fertile Crescent. Genet Resour Crop Evol 60:621–627

    Article  Google Scholar 

  • El-Bouhssini M, Nachit M, Valkoun J, Moussa M, Ketata H, Abdallah O, Abdulhai M, Parker BL, Rihawi F, Joubi A, El-Haramein FJ (2007) Evaluation of wheat and its wild relatives for resistance to Sunn pest under artificial infestation. In: Parker BL, Skinner M, El-Bouhssini M, Kumari SG (eds) Sunn pest management: a decade of progress 1994–2004. Arab Society for Plant Protection, Beirut, pp 363–368

    Google Scholar 

  • El-Bouhssini M, Street K, Joubi A, Ibrahim Z, Rihawi F (2009) Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genet Resour Crop Evol 56:1065–1069

    Article  Google Scholar 

  • Ellis MH, Bonnett DG, Rebetzke GJ (2007) A 192 bp allele at the Xgwm261 locus is not always associated with the Rht8 dwarfing gene in wheat (Triticum aestivum L.). Euphytica 157:209–214

    Article  CAS  Google Scholar 

  • Gadau J, Gerloff CU, Krüger N, Chan H, Schmid-Hempel P, Wille J, Page RE (2001) A linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae). Heredity 87:234–242

    Article  CAS  PubMed  Google Scholar 

  • Gianessi L (2013) Insecticide use in wheat is key for food security in the Near East and West Asia. International Pesticide Benefits Case Study No. 81, CropLife Foundation (www.croplifefoundation.org)

  • Gilbert H, Roy PL (2003) Comparison of three multitrait methods for QTL detection. Genet Sel Evol 35:281–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzales-Vigil E, Bianchetti CM, Phillips GN, Howe GA (2011) Adaptive evolution of threonine deaminase in plant defense against insect herbivores. PNAS 108:5897–5902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gul A, Akbay C, Direk M (2006) Sunn pest control policies and effect of Sunn pest damage wheat quality and price in Turkey. Qual Quant 40:469–480

    Article  Google Scholar 

  • Gupta YP (1971) Threonine deaminase (dehydratase) in Azotobacter chroococcum. Enzymologia 41:91–98

    CAS  PubMed  Google Scholar 

  • Hariri G, Williams PC, Jaby El-Haramein F (2000) Influence of Pentatomidae insects on the physical dough properties and two-layered flat-bread baking quality of Syrian wheat. J Cereal Sci 31:111–118

    Article  Google Scholar 

  • Javahery M (1995) A technical review of sunn pest (Heteroptera: Pentatomoidea). Roma, FAO, p 80

    Google Scholar 

  • Joukhader R, El-Bouhssini M, Jighly A, Ogbonnaya FC (2013) Genomic regions associated with resistance to five major pests in wheat. Mol Breeding 32:943–960

    Article  Google Scholar 

  • Li J, Ji L (2005) Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity 95:221–227

    Article  CAS  PubMed  Google Scholar 

  • Li WL, Faris JD, Chittoor JM, Leach JE, Hulbert SH, Liu DJ, Chen PD, Gill BS (1999) Genomic mapping of defense response genes in wheat. Theor Appl Genet 98:226–233

    Article  CAS  Google Scholar 

  • Manenti G, Galvan A, Pettinicchio A, Trincucci G, Spada E, Zolin A, Milani S, Gonzalez-Neira A, Dragani TA (2009) Mouse genome-wide association mapping needs linkage analysis to avoid false-positive loci. PLoS Genet 5(1):e1000331

    Article  PubMed  PubMed Central  Google Scholar 

  • Mester D, Ronin Y, Minkov D, Nevo E, Korol A (2003) Constructing large-scale genetic maps using an evolutionary strategy algorithm. Genetics 165:2269–2282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols KM, Broman KW, Sundin K, Young JM, Wheeler PA, Thorgaard GH (2007) Quantitative trait loci x maternal cytoplasmic environment interaction for development rate in Oncorhynchus mykiss. Genetics 175:335–347

    Article  PubMed  PubMed Central  Google Scholar 

  • Radjabi GH (1994) Analysis of Sunn pest periodic outbreaks in Iran. Entomol Phytopathol appl 61:1–10

    Google Scholar 

  • Roberts MR, Salinas J, Collinge DB (2002) 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol Biol 1031:1031–1039

    Article  Google Scholar 

  • Sanaey N, Mirak TN (2012) Wheat resistance to the adult insect of Sunn pest, Eurigaster integriceps Put. Am J Agric Biol Sci 7:56–60

    Article  Google Scholar 

  • Subramanyam S, Zheng C, Shukle JT, Williams CE (2013) Hessian fly larval attack triggers elevated expression of disease resistance dirigent-like protein-encoding gene, HfrDrd, in resistant wheat. Arthropod Plant Interact 7:389–402

    Article  Google Scholar 

  • Tan M, El-Bouhssini M, Emebiri L, Wildman O, Tadesse W, Ogbonnaya FC (2015) A SNP marker for the selection of HfrDrd, a Hessian fly-response gene in wheat. Mol Breeding 35:216

    Article  Google Scholar 

  • Taylor JD, Butler D (2014) ASMap: linkage map construction using the MSTmap algorithm, R package version 0.4-7. Available: https://cran.r-project.org/web/packages/ASMap/

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Close TJ, Lonardi S (2011) Accurate construction of consensus genetic maps via integer linear programming. IEEE/ACM Trans Comput Biol Bioinform 8:381–394

    Article  PubMed  Google Scholar 

  • Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann K, Ganal MW, Röder MS (2014) Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLoS One 9(11):e113287

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Yang K, Wei X, Zhang Q, Rong W, Du L, Ye X, Qi L, Zhang Z (2015) The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis. J Exp Bot 66:6591–6603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was funded jointly by grants from the Grains Research & Development Corporation (GRDC), The NSW Department of Primary Industry (NSW DPI), and International Center for Agricultural Research in Dry Areas (ICARDA), under Grant Number DAN00174. The authors are grateful to two anonymous reviewers of the manuscript for their helpful contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. C. Emebiri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical responsibilities

The authors have adhered to the ethical responsibilities outlined by Theoretical and Applied Genetics.

Additional information

Communicated by S. Dreisigacker.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emebiri, L.C., Tan, MK., El-Bouhssini, M. et al. QTL mapping identifies a major locus for resistance in wheat to Sunn pest (Eurygaster integriceps) feeding at the vegetative growth stage. Theor Appl Genet 130, 309–318 (2017). https://doi.org/10.1007/s00122-016-2812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2812-1

Keywords

Navigation