Skip to main content

Advertisement

Log in

Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Small RNAs that are highly conserved across many plant species are involved in stress responses.

Abstract

Plants are exposed to many types of unfavorable conditions during their life cycle that result in some degree of stress. Recent studies on microRNAs (miRNAs) have highlighted their great potential as regulators of stress tolerance in plants. One of the possible ways in which plants counter environmental stresses is by altering their gene expression by the action of miRNAs. miRNAs regulate the expression of target genes by hybridizing to their nascent reverse complementary sequences marking them for cleavage in the nucleus or translational repression in the cytoplasm. Some miRNAs have been reported to be key regulators in biotic as well as abiotic stress responses across many species. The present review highlights some of the regulatory roles of orthologous plant miRNAs in response to various types of stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

lsiRNAs:

Long-siRNAs

miRNAs:

MicroRNAs

nat-siRNAs:

Natural antisense siRNAs

rasiRNAs:

Repeat-associated siRNAs

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) MicroRNA-directed phasing during trans acting siRNA biogenesis in plant. Cell 121:207–221

    CAS  PubMed  Google Scholar 

  • Arenas-Huertero C, Perez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navaratte G, Sanchez F, Covarrubias A, Reyes J (2009) Conserved and novel microRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401

    CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Voesenek LA (2008) Flooding stress, acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    CAS  PubMed  Google Scholar 

  • Bari R, Pant BD, Stitt M, Scheible WR (2006) PHO2 microRNA399 and PHR1 define a phosphate signaling pathway in plants. Plant Physiol 141:988–999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartel D (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bazzini AA, Hopp HE, Beachy RN, Asurmendi S (2007) Infection and co-accumulation of Tumor Mosaic Virus proteins alter microRNAs levels correlating with symptoms and plant development. Proc Natl Acad Sci USA 104:12157–12162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bertolini E, Verelst W, Horner TS, Gianfranceschi L, Piccolo V, Inze D, Pe ME, Mica E (2013) Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon. Mol Plant 6(2):423–443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101:11511–11516

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burkhead JL, Reynolds KAG, Abdel-Ghang SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    CAS  PubMed  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    CAS  PubMed  Google Scholar 

  • Chen H, Li Z, Xiong L (2012a) A plant microRNA regulates the adaptation of roots to drought stress. FEBS Lett 586:1742–1747

    CAS  PubMed  Google Scholar 

  • Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y (2012b) Genome wide identification of cold responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun 417(2):892–896

    CAS  PubMed  Google Scholar 

  • Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant, Cell Environ 30:323–332

    CAS  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su LL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    CAS  PubMed Central  PubMed  Google Scholar 

  • De-Kang LV, Bai X, Li Y, Ding XD, Ge Y, Cai H, Ji W, Wu N, Zhu YM (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459:39–47

    Google Scholar 

  • Dezulian T, Michael R, Palatnik J, Weigel D, Hudson D (2005) Identification of plant microRNA homologs. Bioinformatics 22:359–360

    PubMed  Google Scholar 

  • Ding YE, Zhu C (2009) The role of microRNAs in copper and cadmium homeostasis. Biochem Biophy Res Commun 386:6–10

    CAS  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103(1):29–38. doi:10.1093/aob/mcn205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong Z, Shi L, Wang Y, Chen L, Cai Z, Wang Y, Jin J, Li X (2013) Identification and dynamic regulation of microRNAs involved in salt stress response in functional soybean nodules by high-throughput sequencing. Int J Mol Sci 14:2717–2738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL (2006) Regulation of Auxin response Factor 3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944

    CAS  PubMed  Google Scholar 

  • Ferreira TH, Gentile A, Vilela RD, Costa GGL, Dias LI, Endres L, Menossi M (2012) microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp). PLoS One 7:e46703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franco-Zorrila JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Google Scholar 

  • Fricke W, Akhiyarova G, Wei W, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D (2006) The short term growth response to salt of the developing barley leaf. J Exp Bot 57:1079–1095

    CAS  PubMed  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    CAS  PubMed  Google Scholar 

  • Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 30 UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693

    CAS  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531

    CAS  PubMed  Google Scholar 

  • He XF, Fang YY, Feng L, Guo HS (2008) Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582(16):2445–2452. doi:10.1016/jfebslet200806011

    CAS  PubMed  Google Scholar 

  • Hsieh LL, Lin SI, Shih AC, Chen JW, Zin WY, Tseng CY (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151:2120–2132

    PubMed Central  PubMed  Google Scholar 

  • Huang SQ, Peng J, Qiu CX, Yang ZM (2009) Heavy-metal regulated new microRNAs from rice. J Inorg Biochem 103:282–287

    CAS  PubMed  Google Scholar 

  • Huang SQ, Xiang AL, Che LL, Chen S, Li H, Song JB, Yang ZM (2010) A set of microRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Plant Biotechnol J 8:887–899

    CAS  PubMed  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulates miR398 expression in Arabidopsis. Planta 229:1009–1014

    CAS  PubMed  Google Scholar 

  • Jagadeeswaran G, Li YF, Sunkar R (2014) Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis. The Plant J 77:85–96

    CAS  Google Scholar 

  • Jamalkandi SA, Masoudi-Nejad A (2009) Reconstruction of Arabidopsis thaliana fully integrated small RNA pathway. Func Int Genomics 9:419–432

    CAS  Google Scholar 

  • Jia X, Ren L, Chen QJ, Li R, Jang G (2009) UV-B responsive microRNAs in Populus tremula. J Plant Physiol 166:2046–2047

    CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant miRNAs and their targets, including a stress-induced miRNAs. Mol Cell 14:787–799

    CAS  PubMed  Google Scholar 

  • Jung HJ, Kang H (2007) Expression and functional analysis of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol Biochem 45:805–811

    CAS  PubMed  Google Scholar 

  • Katiyar S, Agarwal Gao S, Vivian-Smith A, Jin H (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134

    Google Scholar 

  • Kawashima CJ, Yoshimoto N, Maruyama-Nakshita A, Tsuchiya YN, Saito K, Takahashi H (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target gene but in different cell types. Plant J 57:313–321

    CAS  PubMed  Google Scholar 

  • Kawashima GC, Matthewman CA, Huang S, Lee BR, Yoshimoto N, Koprivova A, Rubio-Somoza I, Todesco M, Rathjen T, Saito K, Takahashi H, Dalmay T, Kopriva S (2011) Interplay of SLIM 1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. The Plant J 66:863–876

    CAS  Google Scholar 

  • Khraiwesh B, Zhu J-K, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819:137–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    CAS  PubMed  Google Scholar 

  • Li WX, Oono Y, Zhu J, He XJ, Wu JM, lida K, Lu XY, Cui X, Jin H, Zhu JK (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20(8):2238–2251. doi:10.1105/tpc.108.059444

  • Li H, Deng Y, Wu T, Subramanian S, Yu O (2010a) Miss-expression of miR482, miR1512 and miR1515 increases soybean nodulation. Plant Physiol 153:1759–1770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li T, Li H, Zhang YX, Liu JY (2010b) Identification and analysis of seven H2O2 responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa (L.) ssp. indica). Nucl Acids Res 39:2821–2833

    PubMed Central  PubMed  Google Scholar 

  • Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, Jin H, Zhang D, Liang W (2012a) Transcriptional regulation of Arabidopsis MIR 168a and ARGONAUTE1 homeostasis in abscisic acid and abiotic stress responses. Plant Physiol 158:1279–1292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Wang X, Zhang S, Liu D, Duan Y, Dong W (2012b) Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing. PLoS One 7:e39650

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F, Raikhel N, Jiang L , Chen X (2013) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153(3):562–574. doi:10.1016/jcell201304005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang G, Yu D (2010) Reciprocal regulation among miR395 APS and SULTR2:1 in Arabidopsis thaliana. Plant Signal Behav 5:1257–1259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52(1):133–146

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray based analysis of stress-responsive microRNAs in Arabidopsis thaliana. RNA 14:836–843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Q, Zhang YC, Wang CY, Luo YC, Huang QJ, Chen SY, Zhou H, Qu LH, Chen YQ (2009) Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 583(4):723–728. doi:10.1016/j.febslet.2009.01.020

  • Liu Z, Kumari S, Zhang L, Zheng Y, Ware D (2012) Characterization of miRNAs in response to short-term water logging in three inbred lines of Zea mays. PLoS One 7(6):e39786

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu S, Sun YA, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L) and their association with fusiform rust gall development. Plant J 51:1077–1098

    CAS  PubMed  Google Scholar 

  • Lu S, Sun SH, Chiang VL (2008) Stress responsive microRNAs in Populus. Plant J 55:131–151

    CAS  PubMed  Google Scholar 

  • Lu YB, Yang LT, Qi YP, Li Y, Li Z, Chen YB, Huang ZR, Chen LS (2014) Identification of boron-deficiency-responsive microRNAs in Citrus sinensis roots by Illumina sequencing. BMC Plant Biol 14:123

    PubMed Central  PubMed  Google Scholar 

  • Matthewman CA, Kawashima GC, Huska D, Csorba T, Dalmay T, Kopriva S (2012) miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. FEBS Letter 586:3242–3248

    CAS  Google Scholar 

  • Mckenzie RL, Aucamp PJ, Bais AF, Bjorn LO, Llyas M (2007) Changes in biologically active ultraviolet radiation reaching the earth’s surface. Photochem Photobiol Sci 6:218–231

    CAS  PubMed  Google Scholar 

  • Mendoza-Soto AB, Sanchez F, Hernandez G (2012) MicroRNAs as regulators in plant metal toxicity response. Fron Plant Sci 3:105

    CAS  Google Scholar 

  • Mitler R (2002) Oxidative stress antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Google Scholar 

  • Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES , Wilson IW (2010) Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61(1):165–177. doi:10.1093/jxb/erp296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    CAS  PubMed  Google Scholar 

  • Navarro L, Jay F, Nomura K, He SY, Vionnet O (2008) Suppression of the microRNAs pathway by bacterial effector proteins. Science 321:964–967

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naya L, Pual S, Valdes-Lopez O, Mendoza-Soto AB, Nova-Franco B, Sosa-Valencia G, Reyes JL, Hernandez (2014) Regulation of copper homeostasis and biotic interaction by microRNA398b in common bean. PLoS One 9(1):e84416

    PubMed Central  PubMed  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102:3691–3696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perez-Quintero AL, Quintero A, Urrego O, Vanegas P, Lopez C (2012) Bioinformatic identification of Cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv manihotis. BMC Plant Biol 12:29

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qi Y, Denli AM, Hannon GJ (2005) Biochemical specialization within Arabidopsis RNA silencing pathways. Mol Cell 19:421–428

    CAS  PubMed  Google Scholar 

  • Ramirez M, Flores-Pacheco G, Reyes JL, Alvarez AL, Drevon JJ, Girard L, Hernandez G (2013) Two common bean genotypes with contrasting response to phosphorus deficiency show variations in the microRNA 399-mediated PvPHO2 regulation within the PvPHR1 signaling pathway. Int J Mol Sci 14:8328–8344

    PubMed Central  PubMed  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: A versatile platform for launching defense operations. Trends Plant Sci 10:503–509

    CAS  PubMed  Google Scholar 

  • Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y (2013) Identification and characterization of salt-responsive miRNAs in Populus tomentosa by high throughput sequencing. Biochimie 95:743–750

    CAS  PubMed  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant J 49:592–606

    CAS  Google Scholar 

  • Rhoades M, Reinhart B, Lim L, Burge C, Bartel B, Bartel B (2002) prediction of plant microRNA targets. Cell 110:513–520

    CAS  PubMed  Google Scholar 

  • Shukla LI, Chinnusamy V, Sunkar R (2008) The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochim Biophys Acta 1779:743–748

    CAS  PubMed  Google Scholar 

  • Song JB, Gao S, Sun D, Li H, Shu XX, Yang ZM (2013) miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC Plant Biol 13:210

    PubMed Central  PubMed  Google Scholar 

  • Srour A, Afzal AJ, Blahut-Beatty L, Hemmati N, Simmonds DH, Li W, Liu M, Town CD, Sharma H, Arelli P, Lightfoot DA (2012) The receptor like kinase at Rhg1-a/Rfs2 caused pleiotropic resistance to sudden death syndrome and soybean cyst nematode as a transgene by altering signaling responses. BMC Genom 13:368. doi:10.1186/1471-2164-13-368

  • Subramanian S, Fu Y, Sunkar R, Barbuzuk WB, Zhu JKYuO (2008) Novel and nodulation regulated microRNAs in soybean roots. BMC Genom 9:160

    Google Scholar 

  • Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811

    CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Post-translational induction of two Cu/Zn superoxide Dismutase genes in Arabidopsis is mediated by down-regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–319

    CAS  PubMed  Google Scholar 

  • Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu JK (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8:25

    PubMed Central  PubMed  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporter involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    CAS  PubMed  Google Scholar 

  • Trindade I, Capitao C, Dalmay T, Fevereiro MP, Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716

    CAS  PubMed  Google Scholar 

  • Turner M, Nizampatnam NR, Baron M, Coppin S, Damodaran S, Adhikari S, Arunachalam SP, Yu O, Subramanian S (2013) Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposentivity and inhibition of symbiotic nodule development in soybean. Plant Physiol 162:2042–2055

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771

    CAS  PubMed  Google Scholar 

  • Veselov DS, Mustafina AR, Sabirjanova IB, Akhiyarova GR, Dedov AV, Veselov SU, Kudoyarova GR (2002) Effect of PEG-treatment on the leaf growth response and auxin content in shoots of wheat seedlings. Plant Growth Regul 38(2):191–194. doi:10.1023/A:1021254702134

    CAS  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant MicroRNAs. Cell 136:669–687

    CAS  PubMed  Google Scholar 

  • Wang B, Sun YF, Song N, Wang XJ, Feng H, Huang LL, Kang ZS (2013) Identification of UV-B induced microRNAs in wheat. Genet Mol Res 12(4):4213–4221

    CAS  PubMed  Google Scholar 

  • Wang S, Sun X, Hoshino Y, Yu Y, Jia B, Sun Z, Sun M, Duan X, Zhu Y (2014) MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS One 9(3):e91357

    PubMed Central  PubMed  Google Scholar 

  • Willmann M, Poethig S (2007) Conservation and evolution of miRNA regulatory programs in plant development. Curr Opin Plant Biol 10:503–511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu F, Shu J, Jin W (2014) Identification and validation of miRNAs associated with the resistance of maize (Zea mays L) to Exserohilum turcicum. PLoS One 9(1):e87251

    PubMed Central  PubMed  Google Scholar 

  • Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581(7):1464–1474

    CAS  PubMed  Google Scholar 

  • Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L). BMC Plant Biol 10:123–129

    PubMed Central  PubMed  Google Scholar 

  • Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L (2013) Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L) roots. J of Exp Bot 64:4271–4287

    CAS  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikani T, Pilon M (2007) Regulation of copper homeostasis by microRNA in Arabidopsis. J Biol Chem 282:16369–16378

    CAS  PubMed  Google Scholar 

  • Yang ZM, Chen J (2013) A potential role of microRNAs in plant response to metal toxicity. Metallomics 5:1184

    PubMed  Google Scholar 

  • Yang L, Jue D, Li W, Zhang R, Chen M, Yang Q (2013) Identification of miRNA from Eggplant (Solanum melongena L) by small RNA deep sequencing and their response to Verticillium dahlia infection. PLoS One 8(8):e72840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu X, Wang H, Lu Y, Ruiter M, Cariaso M, Prins M, Tunenand A, He Y (2012) Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. J Exp Bot 63:1025–1038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng HQ, Zhu YY, Huang SQ, Yang ZM (2010) Analysis of phosphorous-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). J Plant Physiol 167:1289–1297

    CAS  PubMed  Google Scholar 

  • Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y (2008) Submergence-responsive MicroRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot 102(4):509–519. doi:10.1093/aob/mcn129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genom 10:449

    Google Scholar 

  • Zhang W, Gao S, Zhou X, Chellappan P (2011) Bacterial responsive miRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75:93–105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang LW, Song JB, Shu XX, Zhang Y, Yang ZM (2013) miR395 is involved in detoxification of cadmium in Brassica napus. J Haz Mater 250–251:204–211

    Google Scholar 

  • Zhang N, Yang J, Wang Z, Wen Y, Wang J, He W, Liu B, Si H, Wang D (2014a) Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS One 9(4):e95489

    PubMed Central  PubMed  Google Scholar 

  • Zhang W, Han Z, Guo Q, Liu Y, Zheng Y, Wu F, Gin W (2014b) Identification of maize long non-coding RNAs responsive to drought stress. PLoS One 9(6):e98958

    PubMed Central  PubMed  Google Scholar 

  • Zhao JP, Jiang XL, Zhang BY, Su XH (2012a) Involvement of microRNAs-mediated gene expression regulation in the pathological development of stem canker disease in Populus trichocarpa. PLoS One 7:e44968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao ZS, Song JB, Yang ZM (2012b) Genome wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4610

    Google Scholar 

  • Zhou X, Wang G, Zhang W (2007) UV-B responsive microRNA gene in Arabidopsis thaliana. Mol Syst Biol 3:103

    PubMed Central  PubMed  Google Scholar 

  • Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun 374:538–542

    CAS  PubMed  Google Scholar 

  • Zhou X, Sunkar R, Jin H, Zhu JK, Zhang W (2009) Genome-wide identification and analysis of small RNAs from natural antisense transcript in Oryza sativa. Genome Res 19:70–78

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61(15):4157–4168. doi:10.1093/jxb/erq237

  • Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metals. Plant Cell Env 35:86–99

    Google Scholar 

  • Zhuang Y, Zhou XH, Liu J (2014) Conserved miRNAs and their response to salt stress in wild eggplant (Solanum linnaeanum) roots. Int J Mol Sci 15:839–849

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

RR acknowledges the Department of Biotechnology (DBT), Government of India for Overseas Associateship for scientists working in north-east India. KJ is thankful to University Grants Commission (UGC), Government of India for non-NET fellowship.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ravi Rajwanshi or David A. Lightfoot.

Additional information

Communicated by Alan H. Schulman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajwanshi, R., Chakraborty, S., Jayanandi, K. et al. Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theor Appl Genet 127, 2525–2543 (2014). https://doi.org/10.1007/s00122-014-2391-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2391-y

Keywords

Navigation