Skip to main content
Log in

Moderne Bildgebung von Nierentumoren

Modern imaging of kidney tumors

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Die bildgebenden Verfahren stellen bei Patienten mit Verdacht auf Nierenraumforderungen die Hauptsäule der klinischen Diagnostik dar. In den letzten Jahren haben sich enorme Fortschritte erzielen lassen, die eine genaue artdiagnostische Einordnung von Nierenpathologien in der Mehrzahl der Fälle zweifelsfrei erlauben. Nach wie vor ist die Methode der ersten Wahl die Ultraschalluntersuchung, wobei für die Beurteilung von Nierenraumforderungen KM gegeben werden sollte. Die hier vorliegende Arbeit zeigt das Potential dieser Modalität ebenso auf wie neuste Entwicklungen auf dem Gebiet der Mehrzeilencomputertomographie, bei der besonders die sog. „Dual energy-Bildgebung“ hervorzuheben ist – diese hat das Potential zu signifikanter Dosisreduktion und Verbesserung der Charakterisierung von Nierentumoren. Weiterhin kommt die Magnetresonanztomographie bei unklaren Befunden der beiden zuvor genannten Verfahren sowie bei jungen Patienten und bekannter Allergie gegen jodhaltiges KM zum Einsatz. Sie erlaubt mittels hoher Feldstärken, schneller Gradientenmagneten und stark verbesserter Ortsauflösung eine sehr detailgenaue Abbildung von Nierenraumforderungen.

Die Lektüre der hier vorliegenden Arbeit soll unseren urologischen Kollegen den Stellenwert der oben genannten Verfahren sowie ihre Indikationen und Kontraindikationen nahebringen; zudem wird eine Übersicht über die wichtigsten Nierenraumforderungen und ihre radiologische Darstellung gegeben.

Abstract

If a renal mass is suspected on clinical examination or ultrasound the finding has to be confirmed by cross-sectional imaging. Methods that are used include multidetector-row computed tomography (MDCT) and magnetic resonance imaging (MRI). Also contrast-enhanced ultrasound has been successfully implemented in renal imaging and now plays a major role in the differentiation of benign from malignant renal masses. In expert hands it can be used to show very faint vascularization and subtle enhancement. The MDCT technique benefits from the recently introduced dual energy technology that allows superior characterization of renal masses in a single-phase examination, thereby greatly reducing radiation exposure. For young patients and persons allergic to iodine MRI should be used and it provides excellent soft tissue contrast and visualizes contrast enhancement kinetics in multiphase examinations.

This article aims at giving a comprehensive overview of these different imaging modalities, their clinical indications and contraindications, as well as a description of imaging findings of various renal masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11

Literatur

  1. Ascenti G, Gaeta M, Magno C et al (2004) Contrast-enhanced second-harmonic sonography in the detection of pseudocapsule in renal cell carcinoma. AJR Am J Roentgenol 182:1525–1530

    Article  PubMed  Google Scholar 

  2. Ascenti G, Mazziotti S, Zimbaro G et al (2007) Complex cystic renal masses: characterization with contrast-enhanced US. Radiology 243:158–165

    Article  PubMed  Google Scholar 

  3. Bauer A, Solbiati L, Weissman N (2002) Ultrasound imaging with SonoVue: low mechanical index real-time imaging. Acad Radiol 9(Suppl 2):282–284

    Article  Google Scholar 

  4. Graser A, Zech CJ, Stief CG et al (2009) Imaging renal cell carcinoma. Urologe A 48(4):427–436

    Article  PubMed  CAS  Google Scholar 

  5. Bosniak MA (1986) The current radiological approach to renal cysts. Radiology 158:1–10

    PubMed  CAS  Google Scholar 

  6. Clevert DA, Stickel M, Kopp R et al (2008) Contrast-enhanced ultrasound versus CT and operative findings in evaluation of renal vein aneurysm with AV fistula. Clin Hemorheol Microcirc 39:147–154

    PubMed  Google Scholar 

  7. Helck A, Sommer WH, Wessely M et al (2011) Benefit of contrast enhanced ultrasound for detection of ischaemic lesions and arterio venous fistulas in renal transplants – a feasibility study. Clin Hemorheol Microcirc 48(1):149–160

    PubMed  CAS  Google Scholar 

  8. Schwarz F, Sommer WH, Reiser M, Clevert DA (2011) Contrast-enhanced sonography for blunt force abdominal trauma. Radiologe 51(6):475–482

    Article  PubMed  CAS  Google Scholar 

  9. Helck A, Sommer WH, Wessely M et al (2011) Benefit of contrast enhanced ultrasound for detection of ischaemic lesions and arterio venous fistulas in renal transplants – a feasibility study. Clin Hemorheol Microcirc 48(1):149–160

    PubMed  CAS  Google Scholar 

  10. Helck A, D’Anastasi M, Notohamiprodjo M et al (2011) Improved visualization of renal lesions using three-dimensional ultrasound – a feasibility study. Clin Hemorheol Microcirc 49(1–4):537–550

    Google Scholar 

  11. Schöppler G, Heinzelbecker J, Michaely HJ et al (2012) The impact of ultrasound in urology. Urologe A 51(1):81–98

    Article  PubMed  Google Scholar 

  12. Clevert DA, Horng A, Staehler M et al (2010) Diagnostic algorithm in cystic renal masses. Urologe A 49(3):421–431

    Article  PubMed  Google Scholar 

  13. Greis C (2011) Summary of technical principles of contrast sonography and future perspectives. Radiologe 51(6):456–461

    Article  PubMed  CAS  Google Scholar 

  14. Greis C (2009) Ultrasound contrast agents as markers of vascularity and microcirculation. Clin Hemorheol Microcirc 43(1):1–9

    PubMed  Google Scholar 

  15. Ravine D, Gibson RN, Donlan J, Sheffield LJ (1993) An ultrasound renal cyst prevalence survey: specificity data for inherited renal cystic diseases. Am J Kidney Dis 22:803–807

    PubMed  CAS  Google Scholar 

  16. Downey DB, Fenster A, Williams JC (2000) Clinical utility of three-dimensional US. Radiographics 20(2):559–571

    PubMed  CAS  Google Scholar 

  17. Kalmantis K, Papageorgiou T, Rodolakis A et al (2007) The role of three-dimensional (3D) sonography and 3D power Doppler in the preoperative assessment of borderline ovarian tumors. Eur J Gynaecol Oncol 28(5):381–385

    PubMed  CAS  Google Scholar 

  18. Polakow J, Janica J, Serwatka W et al (2003) Value of three-dimensional sonography in biopsy of focal liver lesions. J Hepatobiliary Pancreat Surg 10(1):87–89

    PubMed  Google Scholar 

  19. Watermann DO, Foldi M, Hanjalic-Beck A et al (2005) Three-dimensional ultrasound for the assessment of breast lesions. Ultrasound Obstet Gynecol 25(6):592–598

    Article  PubMed  CAS  Google Scholar 

  20. Wilson SR, Gupta C, Eliasziw M, Andrew A (2009) Volume imaging in the abdomen with ultrasound: how we do it. AJR Am J Roentgenol 193(1):79–85

    Article  PubMed  Google Scholar 

  21. Elliott ST (2008) Volume ultrasound: the next big thing? Br J Radiol 81(961):8–9

    Article  PubMed  CAS  Google Scholar 

  22. Stenberg B, Elliott S (2010) Diagnosis of gallbladder problems using three-dimensional ultrasound. Eur Radiol 20(4):908–914

    Article  PubMed  Google Scholar 

  23. Clevert DA, Helck A, Paprottka PM et al (2011) Latest developments in ultrasound of the liver. Radiologe 51(8):661–670

    Article  PubMed  Google Scholar 

  24. Clevert DA, D’Anastasi M, Jung EM (2013) Contrast-enhanced ultrasound and microcirculation: efficiency through dynamics – current developments. Clin Hemorheol Microcirc 53(1–2):171–186

    Google Scholar 

  25. Clevert DA, Paprottka PM, Helck A et al (2012) Image fusion in the management of thermal tumor ablation of the liver. Clin Hemorheol Microcirc 52(2–4):205–216

    Google Scholar 

  26. Helck A, Notohamiprodjo M, Danastasi M et al (2012) Ultrasound image fusion – clinical implementation and potential benefits for monitoring of renal transplants. Clin Hemorheol Microcirc 52(2–4):179–186

    Google Scholar 

  27. Helck A, D’Anastasi M, Notohamiprodjo M et al (2012) Multimodality imaging using ultrasound image fusion in renal lesions. Clin Hemorheol Microcirc 50(1–2):79–89

    Google Scholar 

  28. Clevert DA, Helck A, Paprottka PM et al (2012) Ultrasound-guided image fusion with computed tomography and magnetic resonance imaging. Clinical utility for imaging and interventional diagnostics of hepatic lesions. Radiologe 52(1):63–69

    Article  PubMed  Google Scholar 

  29. Yuh BI, Cohan RH (1999) Different phases of renal enhancement: role in detecting and characterizing renal masses during helical CT. AJR Am J Roentgenol 173(3):747–755

    Article  PubMed  CAS  Google Scholar 

  30. Van Der Molen AJ, Cowan NC et al (2008) CT urography: definition, indication and techniques. A guideline for clinical practice. Eur Radiol 18(1):4–17

    Article  Google Scholar 

  31. Lee SJ, Park SH et al (2011) A prospective comparison of standard-dose CT enterography and 50 % reduced-dose CT enterography with and without noise reduction for evaluating Crohn disease. AJR Am J Roentgenol 197(1):50–57

    Article  PubMed  Google Scholar 

  32. Winklehner A, Karlo C et al (2011) Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol 21(12):2521–2526

    Article  PubMed  Google Scholar 

  33. Graser A, Johnson TR, Chandarana H, Macari M (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen Eur Radiol 19(1):13–23. doi:10.1007/s00330-008-1122-7

  34. Graser A, Johnson TRC, Hecht E et al (2009) Dual energy CT in patients with renal masses: can virtually un- enhanced images replacse non con- trast scans? Radiology 44:293–297

    Google Scholar 

  35. Arndt N, Staehler M, Siegert S et al (2012) Dual energy CT in patients with polycystic kidney disease. Eur Radiol 22(10):2125–2129. doi:10.1007/s00330-012-2481-7

    Article  PubMed  Google Scholar 

  36. Young JR, Margolis D, Sauk S et al (2013) Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT. Radiology 36(2):102–111

    Google Scholar 

  37. Kim JK, Park SY, Shon JH, Cho KS (2004) Angiomyolipoma with minimal fat: differentiation from renal cell carcinoma at biphasic helical CT. Radiology 230(3):677–684

    Article  PubMed  Google Scholar 

  38. Chen Y, Zhang J, Dai J et al (2010) Angiogenesis of renal cell carcinoma: perfusion CT findings. Abdom Imaging 35(5):622–628. doi:10.1007/s00261-009-9565-0

    Article  PubMed  Google Scholar 

  39. Fournier LS, Oudard S, Thiam R et al (2010) Metastatic renal carcinoma: evaluation of antiangiogenic therapy with dynamic contrast-enhanced CT. Radiology 256(2):511–518. doi:10.1148/radiol.10091362

    Article  PubMed  Google Scholar 

  40. Rummeny EJ (2006) Ganzkörper-MR-Tomographie, 3. Aufl. Thieme, Stuttgart

  41. Reznek RH (2004) CT/MRI in staging renal cell carcinoma. Cancer Imaging 4(A):25–32

    Article  Google Scholar 

  42. Kreft BP, Muller-Miny H, Sommer T et al (1997) Diagnostic value of MR imaging in comparison to CT in the detection and differential diagnosis of renal masses: ROC analysis. Eur Radiol 7(4):542–547

    Article  PubMed  CAS  Google Scholar 

  43. Henrichs B, Walsh RP (2011) Intraoperative magnetic resonance imaging for neurosurgical procedures: anesthetic implications. Aana J 79(1):71–77

    PubMed  Google Scholar 

  44. Baikoussis NG, Apostolakis E, Papakonstantinou NA et al (2011) Safety of magnetic resonance imaging in patients with implanted cardiac prostheses and metallic cardiovascular electronic devices. Ann Thorac Surg 91(6):2006–2011

    Article  PubMed  Google Scholar 

  45. Sun MR, Ngo L, Genega EM et al (2009) Renal cell carcinoma: dynamic contrast-enhanced MR imaging for differentiation of tumor subtypes – correlation with pathologic findings. Radiology 250(3):793–802

    Article  PubMed  Google Scholar 

  46. Niendorf HP, Alhassan A, Geens VR, Clauss W (1994) Safety review of gadopentetate dimeglumine. Extended clinical experience after more than five million applications. Invest Radiol 29(Suppl 2):179–182

    Article  Google Scholar 

  47. Thomsen HS, Morcos SK, Almen T et al (2013) Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 23(2):307–318

    Article  PubMed  Google Scholar 

  48. Radiology ACo (2012) Nephrogenic systemic Fibrosis (NSF). ACR Manual on Contrast Media, pp 63–71

  49. Wang Y, Alkasab TK, Narin O et al (2011) Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology 260(1):105–111

    Article  PubMed  Google Scholar 

  50. Wang PI, Chong ST, Kielar AZ et al (2012) Imaging of pregnant and lactating patients: part 1, evidence-based review and recommendations. AJR Am J Roentgenol 198(4):778–784

    Article  PubMed  Google Scholar 

  51. Ruppert-Kohlmayr AJ, Uggowitzer M, Meissnitzer T, Ruppert G (2004) Differentiation of renal clear cell carcinoma and renal papillary carcinoma using quantitative CT enhancement parameters. AJR Am J Roentgenol 183(5):1387–1391

    Article  PubMed  Google Scholar 

  52. Karlo CA, Donati OF, Burger IA et al (2013) MR imaging of renal cortical tumours: qualitative and quantitative chemical shift imaging parameters. Eur Radiol (Epub ahead of print)

  53. Pedrosa I, Sun MR, Spencer M et al (2008) MR imaging of renal masses: correlation with findings at surgery and pathologic analysis. Radiographics 28(4):985–1003

    Article  PubMed  Google Scholar 

  54. Karlo CA, Di Paolo PL, Donati OF et al (2013) Renal cell carcinoma: role of mr imaging in the assessment of muscular venous branch invasion. Radiology (Epub ahead of print)

  55. Notohamiprodjo M, Sourbron S, Staehler M et al (2010) Measuring perfusion and permeability in renal cell carcinoma with dynamic contrast-enhanced MRI: a pilot study. J Magn Reson Imaging 31(2):490–501

    Article  PubMed  Google Scholar 

  56. Notohamiprodjo M, Dietrich O, Horger W et al (2010) Diffusion tensor imaging (DTI) of the kidney at 3 tesla-feasibility, protocol evaluation and comparison to 1.5 Tesla. Invest Radiol 45(5):245–254

    Article  PubMed  Google Scholar 

  57. Hahn OM, Yang C, Medved M et al (2008) Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol 26(28):4572–4578

    Article  PubMed  CAS  Google Scholar 

  58. Flaherty KT, Rosen MA, Heitjan FH et al (2008) Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma. Cancer Biol Ther 7(4):496–501

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Graser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clevert, DA., Sterzik, A., Braunagel, M. et al. Moderne Bildgebung von Nierentumoren. Urologe 52, 515–526 (2013). https://doi.org/10.1007/s00120-012-3098-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-012-3098-9

Schlüsselwörter

Keywords

Navigation