Skip to main content
Log in

Neue Therapieansätze bei der Parkinson-Erkrankung

New therapy approaches for Parkinson’s disease

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Neben einer Vielzahl symptomatischer medikamentöser und nichtmedikamentöser Therapieansätze wächst die wissenschaftliche Rationale für ursachenspezifische und verlaufsmodifizierende Therapiestrategien bei Subgruppen der Parkinson-Patienten, die möglicherweise auch einen Nutzen für die große Gruppe der idiopathisch an Parkinson-Erkrankten haben. Die wesentlichen Ansätze und die Therapieziele Verlaufsmodulation und Lebensqualität werden in diesem Beitrag dargestellt.

Abstract

Over the last years major advances have been made in the identification of specific pathways underlying the pathophysiology of subgroups of patients with Parkinson’ disease. These pathways include mitochondrial and lysosomal dysfunction as well as inflammatory patterns and represent the basis for new causative and disease-modifying treatment strategies, possibly not only for the respective subgroups of patients but hopefully also for the majority of patients with idiopathic Parkinson’s disease. This article highlights the main treatment strategies focusing on causative and disease course-modifying strategies as well as quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. de Rijk MC, Tzourio C, Breteler MM, Dartigues JF, Amaducci L, Lopez-Pousa S et al (1997) Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 62(1):10–15

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol 5(3):235–245

    Article  PubMed  Google Scholar 

  3. Maetzler W, Liepelt I, Berg D (2009) Progression of Parkinson’s disease in the clinical phase: Potential markers. Lancet Neurol 8(12):1158–1171

    Article  CAS  PubMed  Google Scholar 

  4. Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55(3):259–272

    Article  CAS  PubMed  Google Scholar 

  5. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  6. Adler CH, Beach TG (2016) Neuropathological basis of nonmotor manifestations of Parkinson’s disease. Mov Disord 31(8):1114–1119

    Article  PubMed  Google Scholar 

  7. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301

    Article  PubMed  Google Scholar 

  8. Berg D, Postuma RB, Bloem B, Chan P, Dubois B, Gasser T et al (2014) Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson’s disease. Mov Disord 29(4):454–462

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lerche S, Seppi K, Behnke S, Liepelt-Scarfone I, Godau J, Mahlknecht P et al (2014) Risk factors and prodromal markers and the development of Parkinson’s disease. J Neurol 261(1):180–187

    Article  PubMed  Google Scholar 

  10. Rakovic A, Grunewald A, Seibler P, Ramirez A, Kock N, Orolicki S et al (2010) Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum Mol Genet 19(16):3124–3137

    Article  CAS  PubMed  Google Scholar 

  11. Rothfuss O, Fischer H, Hasegawa T, Maisel M, Leitner P, Miesel F et al (2009) Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Hum Mol Genet 18(20):3832–3850

    Article  CAS  PubMed  Google Scholar 

  12. Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361(17):1651–1661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brockmann K, Srulijes K, Hauser AK, Schulte C, Csoti I, Gasser T et al (2011) GBA-associated PD presents with nonmotor characteristics. Neurology 77(3):276–280 (Jul)

    Article  CAS  PubMed  Google Scholar 

  14. Brockmann K, Srulijes K, Pflederer S, Hauser AK, Schulte C, Maetzler W et al (2014) GBA-associated Parkinson’s disease: Reduced survival and more rapid progression in a prospective longitudinal study. Mov Disord 30(3):407–411. doi:10.1002/mds.26071

    Article  PubMed  Google Scholar 

  15. Neumann J, Bras J, Deas E, O’Sullivan SS, Parkkinen L, Lachmann RH et al (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132(Pt 7):1783–1794

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mazzulli JR, Xu YH, Sun Y, Knight AL, McLean PJ, Caldwell GA et al (2011) Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146(1):37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schondorf DC, Aureli M, McAllister FE, Hindley CJ, Mayer F, Schmid B et al (2014) iPSC-derived neurons from GBA1-associated Parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun 5:4028

    Article  PubMed  Google Scholar 

  18. Sanchez-Martinez A, Beavan M, Gegg ME, Chau KY, Whitworth AJ, Schapira AH (2016) Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models. Sci Rep 6:31380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schenk DB, Koller M, Ness DK, Griffith SG, Grundman M, Zago W et al (2016) First-in-human assessment of PRX002, an anti-alpha-synuclein monoclonal antibody, in healthy volunteers. Mov Disord 32(2):211–218. doi:10.1002/mds.26878

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cabantchik ZI, Munnich A, Youdim MB, Devos D (2013) Regional siderosis: A new challenge for iron chelation therapy. Front Pharmacol 4:167

    Article  PubMed  PubMed Central  Google Scholar 

  21. Devos D, Moreau C, Devedjian JC, Kluza J, Petrault M, Laloux C et al (2014) Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid Redox Signal 21(2):195–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3(3):216–227

    Article  CAS  PubMed  Google Scholar 

  23. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201

    Article  PubMed  Google Scholar 

  24. Wang Q, Liu Y, Zhou J (2015) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 4:19

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reale M, Greig NH, Kamal MA (2009) Peripheral chemo-cytokine profiles in Alzheimer’s and Parkinson’s diseases. Mini Rev Med Chem 9(10):1229–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song IU, Chung SW, Kim JS, Lee KS (2011) Association between high-sensitivity C‑reactive protein and risk of early idiopathic Parkinson’s disease. Neurol Sci 32(1):31–34

    Article  PubMed  Google Scholar 

  27. Stypula G, Kunert-Radek J, Stepien H, Zylinska K, Pawlikowski M (1996) Evaluation of interleukins, ACTH, cortisol and prolactin concentrations in the blood of patients with parkinson’s disease. Neuroimmunomodulation 3(2–3):131–134

    Article  CAS  PubMed  Google Scholar 

  28. Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW (1999) Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand 100(1):34–41

    Article  CAS  PubMed  Google Scholar 

  29. Rentzos M, Nikolaou C, Andreadou E, Paraskevas GP, Rombos A, Zoga M et al (2009) Circulating interleukin-10 and interleukin-12 in Parkinson’s disease. Acta Neurol Scand 119(5):332–337

    Article  CAS  PubMed  Google Scholar 

  30. Brodacki B, Staszewski J, Toczylowska B, Kozlowska E, Drela N, Chalimoniuk M et al (2008) Serum interleukin (IL-2, IL-10, IL-6, IL-4), TNFalpha, and INFgamma concentrations are elevated in patients with atypical and idiopathic parkinsonism. Neurosci Lett 441(2):158–162

    Article  CAS  PubMed  Google Scholar 

  31. Dzamko N, Halliday GM (2012) An emerging role for LRRK2 in the immune system. Biochem Soc Trans 40(5):1134–1139

    Article  CAS  PubMed  Google Scholar 

  32. Williams-Gray CH, Wijeyekoon R, Yarnall AJ, Lawson RA, Breen DP, Evans JR et al (2016) Serum immune markers and disease progression in an incident Parkinson’s disease cohort (ICICLE-PD). Mov Disord 31(7):995–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brockmann K, Apel A, Schulte C, Schneiderhan-Marra N, Pont-Sunyer C, Vilas D et al (2016) Inflammatory profile in LRRK2-associated prodromal and clinical PD. J Neuroinflammation 13(1):122

    Article  PubMed  PubMed Central  Google Scholar 

  34. Compta Y, Parkkinen L, O’Sullivan SS, Vandrovcova J, Holton JL, Collins C et al (2011) Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: Which is more important? Brain 134(Pt 5):1493–1505

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kang JH, Irwin DJ, Chen-Plotkin AS, Siderowf A, Caspell C, Coffey CS et al (2013) Association of cerebrospinal fluid beta-amyloid 1‑42, T‑tau, P‑tau181, and alpha-synuclein levels with clinical features of drug-naive patients with early Parkinson disease. Jama Neurol 70(10):1277–1287

    PubMed  PubMed Central  Google Scholar 

  36. Walter U, Zach H, Liepelt-Scarfone I, Maetzler W (2017) Hilfreiche Zusatzuntersuchungen beim idiopathischen Parkinson-Syndrom. Nervenarzt. doi:10.1007/s00115-017-0289-z

    Google Scholar 

  37. Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L et al (2013) Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 368(7):610–622

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Brockmann.

Ethics declarations

Interessenkonflikt

K. Brockmann und D. Berg geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brockmann, K., Berg, D. Neue Therapieansätze bei der Parkinson-Erkrankung. Nervenarzt 88, 391–396 (2017). https://doi.org/10.1007/s00115-017-0299-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-017-0299-x

Schlüsselwörter

Keywords

Navigation