Skip to main content
Log in

Morbus Huntington

Huntington’s disease

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Huntington-Erkrankung (Huntington’s disease, HD) ist eine progrediente neurodegenerative Erkrankung, die mit motorischen (Hyperkinesen), psychiatrischen (Depression, Psychose) und kognitiven Symptomen (frontale Demenz) einhergehen kann. In Deutschland sind etwa 8000 Patienten von ihr betroffen.

Fragestellung

Die vorliegende Arbeit präsentiert eine Literaturübersicht zu Symptomatik, Epidemiologie, Genetik, Differenzialdiagnostik, Pathophysiologie, symptomatischer Behandlung und aktuellen therapeutischen Ansätzen, die sich an Kliniker richtet.

Material und Methodik

Über Medline aufrufbare tierexperimentelle und klinische Studien sowie Reviews zu HD wurden ausgewertet.

Ergebnisse

Diagnostische Sicherheit kann nur durch eine genetische Testung erreicht werden. Die Zahl der CAG-Wiederholungen im mutierten Huntingtin-Gen hat entscheidenden Einfluss auf Manifestationsalter, Krankheitsverlauf und Lebenserwartung. Die durch das mutante Huntingtin-Eiweiß (mHTT) ausgelöste Pathophysiologie ist komplex und führt letztlich zum Neuronenuntergang, v. a. im Corpus striatum. In klinischen Studien wurden Antioxidanzien (z. B. Koenzym Q10), Selisistat, PBT2, Cysteamin, NMDA-Rezeptor-Antagonisten und Tyrosinkinase-B-Rezeptor-Agonisten bei HD geprüft.

Schlussfolgerungen

Eine krankheitsmodifizierende Therapie steht bei HD noch nicht zur Verfügung, aber durch „gene silencing“, z. B. mittels RNA-Interferenz, könnte in absehbarer Zeit eine wirkungsvolle Behandlungsoption verfügbar sein.

Summary

Background

Huntington’s disease (HD) is a progressive neurodegenerative disorder characterized by hyperkinetic movements, psychiatric (e.g. depression and psychosis) and cognitive symptoms (frontal lobe dementia). In Germany approximately 8000 patients suffer from HD.

Objectives

The paper reviews the clinical course, epidemiology, genetics, differential diagnoses, pathophysiology, symptomatics and causal treatment options.

Methods

Publications on animal and human HD studies and trials and reviews available in Medline have been taken into account.

Results

Only genetic testing allows diagnostic certainty. The CAG repeat length influences age of onset, disease course and life expectancy. The mechanism by which mutant huntingtin protein (mHTT) causes HD is complex and poorly understood but leads to cell death, in particular in striatal neurons. In clinical trials antioxidants (e.g. coenzyme Q10), selisistat, PBT2, cysteamine, N-methyl-D-aspartate (NMDA)-receptor antagonists and tyrosine kinase B receptor agonists have been studied in HD.

Conclusion

No disease-modifying therapy is currently available for HD; however, gene silencing, e.g. through RNA interference, is a promising technique which could lead to effective therapies in due course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Adair JC, Knoefel JE, Morgan N (2001) Controlled trial of N-acetylcysteine for patients with probable Alzheimer’s disease. Neurology 57:1515–1517

    Article  CAS  PubMed  Google Scholar 

  2. Anderson K, Craufurd D, Edmondson MC et al (2011) An international survey-based algorithm for the pharmacologic treatment of obsessive-compulsive behaviors in Huntington’s disease. PLoS Curr 3:RRN1261

    Article  PubMed Central  PubMed  Google Scholar 

  3. Armstrong MJ, Miyasaki JM (2012) Evidence-based guideline: pharmacologic treatment of chorea in Huntington disease: report of the guideline development subcommittee of the American Academy of Neurology. Neurology 79:597–603

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bañez-Coronel M, Porta S, Kagerbauer B et al (2012) A pathogenic mechanism in Huntington’s disease involves small CAG-repeated RNAs with neurotoxic activity. PLoS Genet 8:e1002481

    Article  PubMed Central  PubMed  Google Scholar 

  5. Beglinger LJ, Adams WH, Langbehn D et al (2014) Results of the citalopram to enhance cognition in Huntington disease trial. Mov Disord 29:401–405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Borrell-Pagès M, Canals JM, Cordelières FP et al (2006) Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase. J Clin Invest 116:1410–1424

    Article  PubMed Central  PubMed  Google Scholar 

  7. Burgunder JM, Guttman M, Perlman S et al (2011) An international survey-based algorithm for the pharmacologic treatment of Chorea in Huntington’s disease. Version 2. PLoS Curr 3:RRN1260

    Article  PubMed Central  PubMed  Google Scholar 

  8. Chakraborty J, Nthenge-Ngumbau DN, Rajamma U, Mohanakumar KP (2014) Melatonin protects against behavioural dysfunctions and dendritic spine damage in 3-nitropropionic acid-induced rat model of Huntington’s disease. Behav Brain Res 264:91–104

    Article  CAS  PubMed  Google Scholar 

  9. Chakraborty J, Singh R, Dutta D et al (2014) Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington’s disease. CNS Neurosci Ther 20:10–19

    Article  CAS  PubMed  Google Scholar 

  10. Chandra A, Johri A, Beal MF (2014) Prospects for neuroprotective therapies in prodromal Huntington’s disease. Mov Disord 29:285–293

    Article  CAS  PubMed  Google Scholar 

  11. Chow HH, Cai Y, Hakim IA et al (2003) Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 9:3312–3319

    CAS  PubMed  Google Scholar 

  12. Ciancarelli I, De Amicis D, Di Massimo C et al (2014) Influence of intensive multifunctional neurorehabilitation on neuronal oxidative damage in patients with Huntington’s disease. Funct Neurol 16:1–6

    Google Scholar 

  13. Coelho T, Adams D, Silva A et al (2013) Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med 369:819–829

    Article  CAS  PubMed  Google Scholar 

  14. Coppedè F (2014) The potential of epigenetic therapies in neurodegenerative diseases. Front Genet 5:220

    PubMed Central  PubMed  Google Scholar 

  15. Deutsche Gesellschaft für Humangenetik, Berufsverband Deutscher Humangenetiker (2011) S2k-Leitlinie Humangenetische Diagnostik und Beratung. Medgen 23:281–323

    Article  Google Scholar 

  16. Deutsche Gesellschaft für Neurologie (DGN). Leitlinie Chorea. AWMF-Leitlinie Nr. 030/028 2011. http://www.awmf.org

  17. Di Pardo A, Maglione V, Alpaugh M et al (2012) Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice. Proc Natl Acad Sci U S A 109:3528–3533

    Article  Google Scholar 

  18. Di Pardo A, Amico E, Favellato M et al (2014) FTY720 (fingolimod) is a neuroprotective and disease-modifying agent in cellular and mouse models of Huntington disease. Hum Mol Genet 23:2251–2265

    Article  Google Scholar 

  19. Dorsey E, Huntington Study Group COHORT Investigators (2012) Characterization of a large group of individuals with huntington disease and their relatives enrolled in the COHORT study. PLoS One 7:e29522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Ehrnhoefer DE, Duennwald M, Markovic P et al (2006) Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 15:2743–2751

    Article  CAS  PubMed  Google Scholar 

  21. Ellrichmann G, Petrasch-Parwez E, Lee DH et al (2011) Efficacy of fumaric acid esters in the R6/2 and YAC128 models of Huntington’s disease. PLoS One 6:e16172

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Esposito E, Cuzzocrea S (2010) Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 8:228–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Gasser T (1998) Chorea Huntington und Chorea Sydenham. In: Brandt T, Dichgans J, Diener HC (Hrsg) Therapie und Verlauf neurologischer Erkrankungen. Kohlhammer, Stuttgart, S 915–921

  24. Gil-Mohapel J, Brocardo PS, Christie BR (2014) The role of oxidative stress in Huntington’s disease: are antioxidants good therapeutic candidates? Curr Drug Targets 15:454–468

    Article  CAS  PubMed  Google Scholar 

  25. Gonzalez V, Cif L, Biolsi B, Garcia-Ptacek S et al (2014) Deep brain stimulation for Huntington’s disease: long-term results of a prospective open-label study. J Neurosurg 121:114–122

    Article  PubMed  Google Scholar 

  26. Groves M, Duijn E van, Anderson K et al (2011) An International Survey-based Algorithm for the Pharmacologic Treatment of Irritability in Huntington’s Disease. PLoS Curr 3:RRN1259

    Article  PubMed Central  PubMed  Google Scholar 

  27. Gusella JF, MacDonald ME, Lee JM (2014) Genetic modifiers of Huntington’s disease. Mov Disord 29:1359–1365

    Article  CAS  PubMed  Google Scholar 

  28. Hathorn T, Snyder-Keller A, Messer A (2011) Nicotinamide improves motor deficits and upregulates PGC-1α and BDNF gene expression in a mouse model of Huntington’s disease. Neurobiol Dis 41:43–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hersch SM, Gevorkian S, Marder K et al (2006) Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2’dG. Neurology 66:250–252

    Article  CAS  PubMed  Google Scholar 

  30. Hickey MA, Zhu C, Medvedeva V et al (2012) Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Mol Neurodegener 7:12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Holl AK, Wilkinson L, Painold A et al (2010) Combating depression in Huntington’s disease: effective antidepressive treatment with venlafaxine XR. Int Clin Psychopharmacol 25:46–50

    Article  PubMed  Google Scholar 

  32. HORIZON Investigators of the Huntington Study Group and European Huntington’s Disease Network (2013) A randomized, double-blind, placebo-controlled study of latrepirdine in patients with mild to moderate Huntington disease. JAMA Neurol 70:25–33

    Article  Google Scholar 

  33. Huntington GS (1872) On Chorea. Med Surg Rep Philadelph 26:317–321

    Google Scholar 

  34. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  35. Huntington Study Group (1996) Unified Huntington’s disease rating scale: reliability and consistency. Mov Disord 11:136–142

    Article  Google Scholar 

  36. Huntington Study Group (2001) A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology 57:397–404

    Google Scholar 

  37. Huntington Study Group (2008) Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study. Arch Neurol 65:1582–1589

    Google Scholar 

  38. Huntington Study Group Pre2CARE Investigators (2010) Safety and tolerability of high-dosage coenzyme Q10 in Huntington’s disease and healthy subjects. Mov Disord 25:1924–1928

    Article  Google Scholar 

  39. Huntington Study Group Reach2HD Investigators (2015) Safety, tolerability, and efficacy of PBT2 in Huntington’s disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 14:39–47

    Article  Google Scholar 

  40. Jiang M, Peng Q, Liu X et al (2013) Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington’s disease. Hum Mol Genet 22:2462–2470

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Jiang M, Wang J, Fu J et al (2012) Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 18:153–158

    Article  CAS  Google Scholar 

  42. Johnson CD, Davidson BL (2010) Huntington’s disease: progress toward effective disease-modifying treatments and a cure. Hum Mol Genet 19:R98–R102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Kalliolia E, Silajdžić E, Nambron R et al (2014) Plasma melatonin is reduced in Huntington’s disease. Mov Disord 29:1511–1515

    Article  CAS  PubMed  Google Scholar 

  44. Kieburtz K, McGarry A, McDermott M et al (2013) A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington’s disease. Mov Disord 28:1407–1415

    Article  CAS  Google Scholar 

  45. Kloos AD, Kegelmeyer DA, White SE, Kostyk SK (2012) The impact of different types of assistive devices on gait measures and safety in Huntington’s disease. PLoS One 7:e30903

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kumar P, Kalonia H, Kumar A (2010) Huntington’s disease: pathogenesis to animal models. Pharmacol Rep 62:1–14

    Article  CAS  PubMed  Google Scholar 

  47. Labbadia J, Morimoto RI (2013) Huntington’s disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 38:378–385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Laccone F, Engel U, Holinski-Feder E et al (1999) DNA analysis of Huntington’s disease: five years of experience in Germany, Austria, and Switzerland. Neurology 53:801–806

    Article  CAS  PubMed  Google Scholar 

  49. Lagoa R, Lopez-Sanchez C, Samhan-Arias AK et al (2009) Kaempferol protects against rat striatal degeneration induced by 3-nitropropionic acid. J Neurochem 111:473–487

    Article  CAS  PubMed  Google Scholar 

  50. Landwehrmeyer GB, Dubois B, Yébenes JG de et al (2007) Riluzole in Huntington’s disease: a 3-year, randomized controlled study. Ann Neurol 62:262–272

    Article  CAS  PubMed  Google Scholar 

  51. Lauterbach EC (2013) Neuroprotective effects of psychotropic drugs in Huntington’s disease. Int J Mol Sci 14: 22558–22603

    Article  PubMed Central  PubMed  Google Scholar 

  52. Lee JM, Ramos EM, Lee JH et al (2012) CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78:690–695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Lopez WO, Nikkhah G, Kahlert UD et al (2013) Clinical neurotransplantation protocol for Huntington’s and Parkinson’s disease. Restor Neurol Neurosci 31:579–595

    CAS  PubMed  Google Scholar 

  54. Losekoot M, Belzen MJ van, Seneca S et al (2013) EMQN/CMGS best practice guidelines for the molecular genetic testing of Huntington disease. Eur J Hum Genet 21:480–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lu Z, Marks E, Chen J et al (2014) Altered selenium status in Huntington’s disease: neuroprotection by selenite in the N171-82Q mouse model. Neurobiol Dis 71:34–42

    Article  CAS  PubMed  Google Scholar 

  56. Lücking CH. Amtage F, Hummel S et al (2013) Huntington-Erkrankung. In: Hufschmidt A, Lücking CH, Rauer S (Hrsg) Neurologie compact. Thieme-Verlag, Stuttgart, S 360–364

  57. Miller TM, Pestronk A, David W et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12:435–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Müller-Vahl KR (2013) Treatment of Tourette syndrome with cannabinoids. Behav Neurol 27:119–124

    Article  PubMed  Google Scholar 

  59. Ondo WG, Mejia NI, Hunter CB (2007) A pilot study of the clinical efficacy and safety of memantine for Huntington’s disease. Parkinsonism Relat Disord 13:453–454

    Article  PubMed  Google Scholar 

  60. Orth M, Handley OJ, Schwenke C et al (2010) Observing Huntington’s Disease: the European Huntington’s Disease Network’s REGISTRY. PLoS Curr 2:RRN1184

    PubMed  Google Scholar 

  61. Paulsen JS, Long JD (2014) Onset of Huntington’s disease: can it be purely cognitive? Mov Disord 29:1342–1350

    Article  PubMed  Google Scholar 

  62. Pasinetti GM, Wang J, Marambaud P et al (2011) Neuroprotective and metabolic effects of resveratrol: therapeutic implications for Huntington’s disease and other neurodegenerative disorders. Exp Neurol 232:1–6

    Article  CAS  PubMed  Google Scholar 

  63. Paulsen JS, Long JD, Ross CA et al (2014) Prediction of manifest Huntington’s disease with clinical and imaging measures: a prospective observational study. Lancet Neurol 13:1193–1201

    Article  PubMed  Google Scholar 

  64. Peyser CE, Folstein M, Chase GA et al (1995) Trial of d-alpha-tocopherol in Huntington’s disease. Am J Psychiatry 152:1771–1775

    Article  CAS  PubMed  Google Scholar 

  65. Pietropaolo S, Bellocchio L, Ruiz-Calvo A et al (2015) Chronic cannabinoid receptor stimulation selectively prevents motor impairments in a mouse model of Huntington’s disease. Neuropharmacology 89:368–374

    Article  CAS  PubMed  Google Scholar 

  66. Piira A, Walsem MR van, Mikalsen G et al (2013) Effects of a one year intensive multidisciplinary rehabilitation program for patients with Huntington’s disease: a Prospective Intervention Study. PLoS Curr 20:5

    Google Scholar 

  67. Prundean A, Youssov K, Humbert S et al (2015) A phase II, open-label evaluation of cysteamine tolerability in patients with Huntington’s disease. Mov Disord 30(2):288–289

    Article  CAS  PubMed  Google Scholar 

  68. Reddy PH, Mao P, Manczak M (2009) Mitochondrial structural and functional dynamics in Huntington’s disease. Brain Res Rev 61:33–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Rieß O (1998) Morbus Huntington. In: Rieß O, Schöls L (Hrsg) Neurogenetik. Springer-Verlag, Heidelberg, S 223–231

  70. Rinaldi C, Salvatore E, Giordano I et al (2012) Predictors of survival in a Huntington’s disease population from southern Italy. Can J Neurol Sci 39:48–51

    Article  PubMed  Google Scholar 

  71. Rollnik JD (2009) Komplexe choreatiforme Bewegungsstörung bei Hashimoto-Thyreoiditis. Akt Neurol 36:138–140

    Article  Google Scholar 

  72. Rosas HD, Doros G, Gevorkian S et al (2014) PRECREST: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology 82:850–857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Sandhir R, Sood A, Mehrotra A, Kamboj SS (2012) N-Acetylcysteine reverses mitochondrial dysfunctions and behavioral abnormalities in 3-nitropropionic acid-induced Huntington’s disease. Neurodegener Dis 9:145–157

    Article  CAS  PubMed  Google Scholar 

  74. Senol N, Nazıroğlu M, Yürüker V (2014) N-acetylcysteine and selenium modulate oxidative stress, antioxidant vitamin and cytokine values in traumatic brain injury-induced rats. Neurochem Res 39:685–692

    Article  CAS  PubMed  Google Scholar 

  75. Shanafelt TD, Call TG, Zent CS et al (2009) Phase I trial of daily oral Polyphenon E in patients with asymptomatic Rai stage 0 to II chronic lymphocytic leukemia. J Clin Oncol 27:3808–3814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Sitek EJ, Thompson JC, Craufurd D, Snowden JS (2014) Unawareness of deficits in Huntington’s disease. J Huntingtons Dis 3:125–135

    PubMed  Google Scholar 

  77. Stiles DK, Zhang Z, Ge P, Nelson B et al (2012) Widespread suppression of huntingtin with convection-enhanced delivery of siRNA. Exp Neurol 233:463–471

    Article  CAS  PubMed  Google Scholar 

  78. Süssmuth SD, Haider S, Landwehrmeyer GB et al (2015) An exploratory double blind, randomised clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington’s disease. Br J Clin Pharmacol 79(3)465–476

  79. Tabernero J, Shapiro GI, LoRusso PM et al (2013) First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov 3:406–417

    Article  CAS  PubMed  Google Scholar 

  80. Tabrizi SJ, Blamire AM, Manners DN et al (2005) High-dose creatine therapy for Huntington disease: a 2-year clinical and MRS study. Neurology 64:1655–1656

    Article  CAS  PubMed  Google Scholar 

  81. Tasset I, Pontes AJ, Hinojosa AJ et al (2011) Olive oil reduces oxidative damage in a 3-nitropropionic acid-induced Huntington’s disease-like rat model. Nutr Neurosci 14:106–111

    Article  CAS  PubMed  Google Scholar 

  82. Todd D, Gowers I, Dowler SJ et al (2014) A monoclonal antibody TrkB receptor agonist as a potential therapeutic for Huntington’s disease. PLoS One 9:e87923

    Article  PubMed Central  PubMed  Google Scholar 

  83. Trippier PC, Jansen Labby K et al (2013) Target- and mechanism-based therapeutics for neurodegenerative diseases: strength in numbers. J Med Chem 56:3121–3147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Trottier Y, Biancalana V, Mandel JL (1994) Instability of CAG repeats in Huntington’s disease: relation to parental transmission and age of onset. J Med Genet 31:377–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Vagner T, Young D, Mouravlev A (2012) Nucleic acid-based therapy approaches for Huntington’s disease. Neurol Res Int 2012:358370

    Article  PubMed Central  PubMed  Google Scholar 

  86. Verbessem P, Lemiere J, Eijnde BO et al (2003) Creatine supplementation in Huntington’s disease: a placebo-controlled pilot trial. Neurology 61:925–930

    Article  CAS  PubMed  Google Scholar 

  87. Visser TJ (2010) Huntington’s disease. Etiology and symptoms, diagnosis and treatment. Nova Science Publishers, New York

  88. Wang X (2009) The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther 15:345–357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Westerberg G, Chiesa JA, Andersen CA et al (2015) Safety, Pharmacokinetics, pharmacogenomics and QT Concentration effect modelling of the SirT1 inhibitor selisistat in healthy volunteers. Br J Clin Pharmacol 79(3):477–491

    Article  CAS  PubMed  Google Scholar 

  90. Weindl A, Conrad B (1996) Chorea und choreatische Bewegungsstörungen. In: Conrad B, Ceballos-Baumann AO (Hrsg) Bewegungsstörungen in der Neurologie. Thieme-Verlag, Stuttgart, S 155–180

  91. Weishaupt JH, Bartels C, Pölking E et al (2006) Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res 41:313–323

    Article  CAS  PubMed  Google Scholar 

  92. Wild EJ, Tabrizi SJ (2014) Targets for future clinical trials in Huntington’s disease: what’s in the pipeline? Mov Disord 29:1434–1445

    Article  CAS  PubMed  Google Scholar 

  93. Zielonka D, Piotrowska I, Marcinkowski JT, Mielcarek M (2014) Skeletal muscle pathology in Huntington’s disease. Front Physiol 5:380

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J.D. Rollnik gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien am Menschen oder an Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.D. Rollnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rollnik, J. Morbus Huntington. Nervenarzt 86, 725–735 (2015). https://doi.org/10.1007/s00115-015-4306-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-015-4306-9

Schlüsselwörter

Keywords

Navigation