Skip to main content
Log in

Multimodales Monitoring in der Neurointensivmedizin

Eine Standortbeschreibung

Multimodal monitoring in neurointensive care medicine

State of the art

  • Leitthema
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die Prognose neurointensivpflichtiger Patienten hängt wesentlich von neuronalen Sekundärschäden ab, bei denen verschiedene Mechanismen, wie Ödembildung oder intrakranielle Drucksteigerung, zu einem ischämischen/hypoxischen Gewebeuntergang führen. Durch den zerebralen Schaden, aber auch durch die Notwendigkeit der Analgosedierung sind diese Patienten klinisch meist nur eingeschränkt beurteilbar, zudem sind Zeichen eines Sekundärschadens häufig bereits Ausdruck eines fortgeschrittenen Herniationssyndroms und kennzeichnen damit ein meist unumkehrbares Geschehen. Zur frühzeitigen Vorhersage und Detektion von Sekundärschäden sind in den letzten Jahren zahlreiche Überwachungstechniken entwickelt worden, die bettseitig und möglichst kontinuierlich Informationen über den Status verschiedener zerebraler Funktionssysteme liefern. Dieses Neuromonitoring kommt zum Einsatz, um rechtzeitig therapeutische Maßnahmen einleiten zu können, deren Effekt zu überprüfen, eine prognostische Einschätzung vorzunehmen und schließlich das langfristige neurologische Ergebnis des Patienten zu verbessern. Häufig werden verschiedene Monitoringtechniken zu einem multimodalen Neuromonitoring kombiniert. Die vorliegende Arbeit gibt eine Übersicht der wichtigsten gegenwärtig verfügbaren und angewendeten Neuromonitoringverfahren.

Abstract

The prognosis of neurointensive care patients depends largely on the occurrence of secondary ischemic/hypoxic tissue damage, which is mediated by different pathomechanisms, such as edema formation or increased intracranial pressure. Due to the cerebral damage and need for sedation as well as intubation, clinical assessment of these patients is limited. Furthermore, clinical signs of secondary damage, such as advanced herniation syndromes are often delayed and therefore mostly indicate irreversible brain damage. To adequately predict and detect secondary neuronal damage, various neuromonitoring techniques have been developed in recent years with ongoing technical refinement. These can be used for bedside and ideally continuous monitoring of various functional systems of the brain. Neuromonitoring is used to implement early therapeutic measures before irreversible brain damage has occurred, to monitor therapeutic effects, for evaluation of the prognosis and to improve the neurological outcome of patients. Different monitoring techniques are often combined in multimodal neuromonitoring. This article gives an overview of the most promising neuromonitoring techniques available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Chesnut RM, Marshall LF, Klauber MR et al (1993) The role of secondary brain injury in determining outcome from severe head injury. J Trauma 34:216–222

    Article  PubMed  CAS  Google Scholar 

  2. Bramlett HM, Dietrich WD (2004) Pathophysiology of cerebral ischemia and brain trauma: similarities and differences. J Cereb Blood Flow Metab 24:133–150

    Article  PubMed  Google Scholar 

  3. Endres M, Dirnagl U (2002) Ischemia and stroke. Adv Exp Med Biol 513:455–473

    Article  PubMed  CAS  Google Scholar 

  4. Bardt TF, Unterberg AW, Kiening KL et al (1998) Multimodal cerebral monitoring in comatose head-injured patients. Acta Neurochir 140:357–365

    Article  CAS  Google Scholar 

  5. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons (2007) Guidelines for the management of severe traumatic brain injury. J. Neurotrauma 24 Suppl 1:1–106 (Zugegriffen: 04.01.2012)

    Google Scholar 

  6. Czosnyka M, Smielewski P, Kirkpatrick P et al (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–19

    Article  PubMed  CAS  Google Scholar 

  7. Sánchez-Porras R, Santos E, Czosnyka M et al (2012) „Long“ pressure reactivity index (L-PRx) as a measure of autoregulation correlates with outcome in traumatic brain injury patients. Acta Neurochir (Wien) 154:1575–1581

    Google Scholar 

  8. Zandbergen EGJ, Hijdra A, Koelman JHTM et al (2006) Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology 66:62–68

    Article  PubMed  CAS  Google Scholar 

  9. Burghaus L, Hilker R, Dohmen C et al (2007) Early electroencephalography in acute ischemic stroke: prediction of a malignant course? Clin Neurol Neurosurg 109:45–49

    Article  PubMed  Google Scholar 

  10. Oddo M, Carrera E, Claassen J et al (2009) Continuous electroencephalography in the medical intensive care unit Crit. Care Med 37:2051–2056 (Zugegriffen: 01.12.2010)

    Google Scholar 

  11. Claassen J, Jetté N, Chum F et al (2007) Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology 69:1356–1365

    Article  PubMed  CAS  Google Scholar 

  12. Friedman D, Claassen J (2010) Quantitative EEG and cerebral ischemia. Clin Neurophysiol 121:1707–1708

    Article  PubMed  Google Scholar 

  13. Dreier JP (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17:439–447 (Zugegriffen: 29.05.2011)

    Google Scholar 

  14. Guérit J-M (2005) Evoked potentials in severe brain injury. Prog Brain Res 150:415–426

    Article  PubMed  Google Scholar 

  15. Haupt WF, Pawlik G, Thiel A (2006) Initial and serial evoked potentials in cerebrovascular critical care patients J Clin Neurophysiol 23:389–394

    Google Scholar 

  16. Burghaus L, Liu W-C, Dohmen C et al (2008) Evoked potentials in acute ischemic stroke within the first 24 h: possible predictor of a malignant course. Neurocrit Care 9:13–16

    Article  PubMed  Google Scholar 

  17. Haupt WF, Hojer C, Pawlik G (1995) Prognostic value of evoked potentials and clinical grading in primary subarachnoid haemorrhage. Acta Neurochir (Wien) 137:146–150

    Google Scholar 

  18. Kenton AR, Martin PJ, Abbott RJ, Moody AR (1997) Comparison of transcranial color-coded sonography and magnetic resonance angiography in acute stroke. Stroke 28:1601–1606

    Article  PubMed  CAS  Google Scholar 

  19. Demchuk AM, Christou I, Wein TH et al (2000) Accuracy and criteria for localizing arterial occlusion with transcranial Doppler. J Neuroimaging 10:1–12

    PubMed  CAS  Google Scholar 

  20. Seidel G, Albers T, Meyer K, Wiesmann M (2003) Perfusion harmonic imaging in acute middle cerebral artery infarction. Ultrasound Med Biol 29:1245–1251

    Article  PubMed  Google Scholar 

  21. Carrera E, Schmidt JM, Oddo M et al (2009) Transcranial Doppler for predicting delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery 65:316–324 (Zugegriffen: 01.12.2010)

    Google Scholar 

  22. Harloff A, Niesen WD, Reinhard M (2012) Innovations in neuro-monitoring using transcranial ultrasound. Fortschr Neurol Psychiatr 80:327–335

    Article  PubMed  CAS  Google Scholar 

  23. Vajkoczy P, Roth H, Horn P et al (2000) Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg 93:265–274

    Article  PubMed  CAS  Google Scholar 

  24. Gopinath SP, Robertson CS, Contant CF et al (1994) Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry 57:717–723

    Article  PubMed  CAS  Google Scholar 

  25. Gopinath SP, Valadka AB, Uzura M, Robertson CS (1999) Comparison of jugular venous oxygen saturation and brain tissue Po2 as monitors of cerebral ischemia after head injury. Crit Care Med 27:2337–2345

    Article  PubMed  CAS  Google Scholar 

  26. Orakcioglu B, Sakowitz OW, Neumann J-O et al (2010) Evaluation of a novel brain tissue oxygenation probe in an experimental swine model. Neurosurgery 67:1716–1723 (Zugegriffen: 04.01.2012)

    Google Scholar 

  27. Schwab S, Schellinger P, Werner C et al (2011) NeuroIntensiv. 2. Aufl., Springer, Berlin

  28. Kiening KL, Unterberg AW, Bardt TF et al (1996) Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg 85:751–777

    Article  PubMed  CAS  Google Scholar 

  29. Jaeger M, Dengl M, Meixensberger J, Schuhmann MU (2010) Effects of cerebrovascular pressure reactivity-guided optimization of cerebral perfusion pressure on brain tissue oxygenation after traumatic brain injury. Crit Care Med 38:1343–1347 (Zugegriffen: 04.01.2012)

    Google Scholar 

  30. Beynon C, Kiening KL, Orakcioglu B et al (2012) Brain tissue oxygen monitoring and hyperoxic treatment in patients with traumatic brain injury. J Neurotrauma 29:2109–2123

    Article  PubMed  Google Scholar 

  31. Keller E, Froehlich J, Muroi C et al (2011) Neuromonitoring in intensive care: a new brain tissue probe for combined monitoring of intracranial pressure (ICP) cerebral blood flow (CBF) and oxygenation. Acta Neurochir Suppl 110:217–220 (Zugegriffen: 04.01.2012)

    Google Scholar 

  32. Persson L, Valtysson J, Enblad P et al (1996) Neurochemical monitoring using intracerebral microdialysis in patients with subarachnoid hemorrhage. J Neurosurg 84:606–616

    Article  PubMed  CAS  Google Scholar 

  33. Enblad P, Valtysson J, Andersson J et al (1996) Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab 16:637–644

    Article  PubMed  CAS  Google Scholar 

  34. Sarrafzadeh AS, Sakowitz OW, Kiening KL et al (2002) Bedside microdialysis: a tool to monitor cerebral metabolism in subarachnoid hemorrhage patients? Crit Care Med 30:1062–1070. Zugegriffen: 11.09.2009

    Google Scholar 

  35. Sarrafzadeh A, Haux D, Sakowitz O et al (2003) Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke 34:1382–1388

    Article  PubMed  CAS  Google Scholar 

  36. Nilsson OG, Brandt L, Ungerstedt U, Saveland H (1999) Bedside detection of brain ischemia using intracerebral microdialysis: subarachnoid hemorrhage and delayed ischemic deterioration. Neurosurgery 45:1176–1184

    Article  PubMed  CAS  Google Scholar 

  37. Timofeev I, Carpenter KLH, Nortje J et al (2011) Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134:484–494

    Article  PubMed  Google Scholar 

  38. Dohmen C, Bosche B, Graf R et al (2003) Prediction of malignant course in MCA infarction by PET and microdialysis. Stroke 34:2152–2158 (Zugegriffen 11.09.2009)

    Article  PubMed  Google Scholar 

  39. Berger C, Schäbitz W-R, Georgiadis D et al (2002) Effects of hypothermia on excitatory amino acids and metabolism in stroke patients: a microdialysis study. Stroke 33:519–524

    Article  PubMed  CAS  Google Scholar 

  40. Parkin M, Hopwood S, Jones DA et al (2005) Dynamic changes in brain glucose and lactate in pericontusional areas of the human cerebral cortex, monitored with rapid sampling on-line microdialysis: relationship with depolarisation-like events. J Cereb Blood Flow Metab 25:402–413

    Article  PubMed  CAS  Google Scholar 

  41. Feuerstein D, Manning A, Hashemi P et al (2010) Dynamic metabolic response to multiple spreading depolarizations in patients with acute brain injury: an online microdialysis study. J Cereb Blood Flow Metab 30:1343–1355

    Article  PubMed  CAS  Google Scholar 

  42. Diener H-C, Deutsche Gesellschaft für Neurologie, Kommission Leitlinien (2012) Leitlinien für Diagnostik und Therapie in der Neurologie. Thieme, Stuttgart

  43. European Stroke Organisation (2008) Guidelines for management of ischaemic stroke and transient ischaemic attack 2008. Cerebrovasc Dis 25:457–507

    Article  Google Scholar 

  44. Adams HP Jr, del Zoppo G, Alberts MJ et al (2007) Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 38:1655–1711

    Article  PubMed  Google Scholar 

  45. Lin T-K, Lien L-M, Chen W-H et al (2010) A concise guideline for the management of large hemispheric infarction in Taiwan: 2010 update: a guideline from the Taiwan Stroke Society. Acta Neurol Taiwan 19:296–302

    PubMed  Google Scholar 

  46. Morgenstern LB, Hemphill JC 3rd, Anderson C et al (2010) Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 41:2108–2129

    Article  PubMed  Google Scholar 

  47. Connolly ES Jr, Rabinstein AA, Carhuapoma JR et al (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke 43:1711–1737

    Article  PubMed  Google Scholar 

  48. Diringer MN, Bleck TP, Claude Hemphill J 3rd et al (2011) Critical care management of patients following aneurysmal subarachnoid hemorrhage: recommendations from the Neurocritical Care Society’s Multidisciplinary Consensus Conference. Neurocrit Care 15:211–240

    Article  PubMed  Google Scholar 

  49. Wolf S, Wartenberg KE (2012) „Delayed cerebral ischemia“ nach aneurysmatischer Subarachnoidalblutung. Prävention, Diagnostik und Therapie. Nervenarzt 83:

Download references

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. W. Sakowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dohmen, C., Sakowitz, O. Multimodales Monitoring in der Neurointensivmedizin. Nervenarzt 83, 1559–1568 (2012). https://doi.org/10.1007/s00115-012-3530-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-012-3530-9

Schlüsselwörter

Keywords

Navigation