Skip to main content
Log in

Multiple-Sklerose-Update zur Pathophysiologie und neuen immuntherapeutischen Ansätzen

Update on pathophysiologic and immunotherapeutic approaches for the treatment of multiple sclerosis

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die Multiple Sklerose (MS) ist eine chronische Erkrankung, die überwiegend junge Erwachsene betrifft und zu bleibender Behinderung führen kann. Obwohl die Ätiologie der MS noch immer unbekannt ist, haben die vergangenen 10 Jahre beträchtliche Erfolge im Verständnis der zugrunde liegenden Pathophysiologie gebracht. Während die MS als Prototyp einer entzündlichen Autoimmunerkrankung des zentralen Nervensystems (ZNS) angesehen wird, unterstreichen jüngste Daten die Wichtigkeit primärer und sekundärer neurodegenerativer Mechanismen. Die Zulassung des ersten monoklonalen Antikörpers in der neurologischen Therapie, Natalizumab (Tysabri®), verdeutlicht die rasante Weiterentwicklung im Feld. Neuere Behandlungsstrategien zielen insbesondere auch darauf ab, axonalen Schaden zu begrenzen (Axon-/Neuroprotektion) und/oder die Remyelinisierung zu fördern. Der Übersichtsartikel referiert neue Erkenntnisse in der Pathophysiologie der MS; im 2. Teil werden die wichtigsten laufenden oder kürzlich abgeschlossenen klinischen Therapiestudien zusammengestellt.

Summary

Multiple sclerosis (MS) is a chronic disabling disease with significant implications for patients and society. The individual disease course is difficult to predict due to the heterogeneity of clinical presentation and of radiologic and pathologic findings. Although its etiology still remains unknown, the last decade has brought considerable understanding of the underlying pathophysiology of MS. In addition to its acceptance as a prototypic inflammatory autoimmune disorder, recent data reveal the importance of primary and secondary neurodegenerative mechanisms such as oligodendrocyte death, axonal loss, and ion channel dysfunction. The deepened understanding of its immunopathogenesis and the limited effectiveness of currently approved disease-modifying therapies have led to a tremendous number of trials investigating potential new drugs. Emerging treatments take into account the different immunopathological mechanisms and strategies, to protect against axonal damage and promote remyelination. This review provides a compilation of novel immunotherapeutic strategies and recently uncovered aspects of known immunotherapeutic agents. The pathogenetic rationale of these novel drugs for the treatment of MS and accompanying preclinical and clinical data are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Aboul-Enein F, Bauer J, Klein M et al. (2004) Selective and antigen-dependent effects of myelin degeneration on central nervous system inflammation. J Neuropathol Exp Neurol 63: 1284–1296

    PubMed  CAS  Google Scholar 

  2. Abrams JR, Lebwohl MG, Guzzo CA et al. (1999) CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 103: 1243–1252

    PubMed  CAS  Google Scholar 

  3. Acha-Orbea H, Mitchell DJ, Timmermann L et al. (1988) Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 54: 263–273

    PubMed  CAS  Google Scholar 

  4. Achiron A, Lavie G, Kishner I et al. (2004) T cell vaccination in multiple sclerosis relapsing-remitting nonresponders patients. Clin Immunol 113: 155–160

    PubMed  CAS  Google Scholar 

  5. Agnello D, Bigini P, Villa P et al. (2002) Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res 952: 128–134

    PubMed  CAS  Google Scholar 

  6. Ahrens N, Salama A, Haas J (2001) Mycophenolate-mofetil in the treatment of refractory multiple sclerosis. J Neurol 248: 713–714

    PubMed  CAS  Google Scholar 

  7. Alegre ML, Sattar HA, Herold KC et al. (1994) Prevention of the humoral response induced by an anti-CD3 monoclonal antibody by deoxyspergualin in a murine model. Transplantation 57: 1786–1794

    PubMed  CAS  Google Scholar 

  8. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6: 205–217

    PubMed  CAS  Google Scholar 

  9. Andersen O, Lycke J, Tollesson PO et al. (1996) Linomide reduces the rate of active lesions in relapsing-remitting multiple sclerosis. Neurology 47: 895–900

    PubMed  CAS  Google Scholar 

  10. Antel JP, Bar-Or A (2003) Do myelin-directed antibodies predict multiple sclerosis? N Engl J Med 349: 107–109

    PubMed  CAS  Google Scholar 

  11. Archelos JJ, Hartung HP (2000) Pathogenetic role of autoantibodies in neurological diseases. Trends Neurosci 23: 317–327

    PubMed  CAS  Google Scholar 

  12. Arroyo AG, Yang JT, Rayburn H, Hynes RO (1996) Differential requirements for alpha4 integrins during fetal and adult hematopoiesis. Cell 85: 997–1008

    PubMed  CAS  Google Scholar 

  13. Babbe H, Roers A, Waisman A et al. (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192: 393–404

    PubMed  CAS  Google Scholar 

  14. Baecher-Allan C, Hafler DA (2004) Suppressor T cells in human diseases. J Exp Med 200: 273–276

    PubMed  CAS  Google Scholar 

  15. Baker D, Pryce G, Croxford JL et al. (2000) Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404: 84–87

    PubMed  CAS  Google Scholar 

  16. Bar-Or A, Antel J, Bodner CA (2006) Antigen-specific immunomodulation in multiple sclerosis patients treated with MBP encoding DNA plasmid (BHT-3009) alone or combined with atorvastatin. Neurology [Suppl 66]: A62–A62

  17. Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55: 458–468

    PubMed  Google Scholar 

  18. Bechtold DA, Kapoor R, Smith KJ (2004) Axonal protection using flecainide in experimental autoimmune encephalomyelitis. Ann Neurol 55: 607–616

    PubMed  CAS  Google Scholar 

  19. Beeton C, Wulff H, Barbaria J et al. (2001) Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A 98: 13942–13947

    PubMed  CAS  Google Scholar 

  20. Ben-Nun A, Cohen IR (1981) Vaccination against autoimmune encephalomyelitis (EAE): attenuated autoimmune T lymphocytes confer resistance to induction of active EAE but not to EAE mediated by the intact T lymphocyte line. Eur J Immunol 11: 949–952

    PubMed  CAS  Google Scholar 

  21. Benoist C, Mathis D (2001) Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol 2: 797–801

    PubMed  CAS  Google Scholar 

  22. Berger T, Rubner P, Schautzer F et al. (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 349: 139–145

    PubMed  CAS  Google Scholar 

  23. Bielekova B, Catalfamo M, Reichert-Scrivner S et al. (2006) Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci U S A 103: 5941–5946

    PubMed  CAS  Google Scholar 

  24. Bielekova B, Goodwin B, Richert N et al. (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6: 1167–1175

    PubMed  CAS  Google Scholar 

  25. Bielekova B, Lincoln A, McFarland H, Martin R (2000) Therapeutic potential of phosphodiesterase-4 and −3 inhibitors in Th1-mediated autoimmune diseases. J Immunol 164: 1117–1124

    PubMed  CAS  Google Scholar 

  26. Bielekova B, Richert N, Howard T et al. (2004) Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta. Proc Natl Acad Sci U S A 101: 8705–8708

    PubMed  CAS  Google Scholar 

  27. Bisikirska B, Colgan J, Luban J et al. (2005) TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J Clin Invest 115: 2904–2913

    PubMed  CAS  Google Scholar 

  28. Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14: 271–278

    PubMed  CAS  Google Scholar 

  29. Black JA, Dib-Hajj S, Baker D et al. (2000) Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proc Natl Acad Sci U S A 97: 11598–11602

    PubMed  CAS  Google Scholar 

  30. Blanco Y, Saiz A, Carreras E, Graus F (2005) Autologous haematopoietic-stem-cell transplantation for multiple sclerosis. Lancet Neurol 4: 54–63

    PubMed  Google Scholar 

  31. Bolton C, Paul C (1997) MK-801 limits neurovascular dysfunction during experimental allergic encephalomyelitis. J Pharmacol Exp Ther 282: 397–402

    PubMed  CAS  Google Scholar 

  32. Boneberg EM, Hartung T (2002) Granulocyte colony-stimulating factor attenuates LPS-stimulated IL-1beta release via suppressed processing of proIL-1beta, whereas TNF-alpha release is inhibited on the level of proTNF-alpha formation. Eur J Immunol 32: 1717–1725

    PubMed  CAS  Google Scholar 

  33. Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18: 223–253

    PubMed  CAS  Google Scholar 

  34. Bourdette DN, Whitham RH, Chou YK et al. (1994) Immunity to TCR peptides in multiple sclerosis. I. Successful immunization of patients with synthetic V beta 5.2 and V beta 6.1 CDR2 peptides. J Immunol 152: 2510–2519

    PubMed  CAS  Google Scholar 

  35. Bowen JD, Petersdorf SH, Richards TL et al. (1998) Phase I-Study of a humanized anti-CD11/CD18 monoclonal antibody in multiple sclerosis. Clin Pharmacol Ther 64: 339–346

    PubMed  CAS  Google Scholar 

  36. Brand-Schieber E, Werner P (2004) Calcium channel blockers ameliorate disease in a mouse model of multiple sclerosis. Exp Neurol 189: 5–9

    PubMed  CAS  Google Scholar 

  37. Brinkmann V, Davis MD, Heise CE et al. (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277: 21453–21457

    PubMed  CAS  Google Scholar 

  38. Brok HP, Meurs M van, Blezer E et al. (2002) Prevention of experimental autoimmune encephalomyelitis in common marmosets using an anti-IL-12p40 monoclonal antibody. J Immunol 169: 6554–6563

    PubMed  CAS  Google Scholar 

  39. Brundula V, Rewcastle NB, Metz LM et al. (2002) Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125: 1297–1308

    PubMed  Google Scholar 

  40. Brunmark C, Runstrom A, Ohlsson L et al. (2002) The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis. J Neuroimmunol 130: 163–172

    PubMed  CAS  Google Scholar 

  41. Budde K, Schmouder RL, Brunkhorst R et al. (2002) First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol 13: 1073–1083

    PubMed  CAS  Google Scholar 

  42. Carreno BM, Collins M (2002) The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol 20: 29–53

    PubMed  CAS  Google Scholar 

  43. Cepok S, Zhou D, Srivastava R et al. (2005) Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 115: 1352–1360

    PubMed  CAS  Google Scholar 

  44. Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346: 165–173

    PubMed  Google Scholar 

  45. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354: 610–621

    PubMed  CAS  Google Scholar 

  46. Chen BJ, Morris RE, Chao NJ (2000) Graft-versus-host disease prevention by rapamycin: cellular mechanisms. Biol Blood Marrow Transplant 6: 529–536

    PubMed  CAS  Google Scholar 

  47. Chitnis T, Imitola J, Khoury SJ (2005) Therapeutic strategies to prevent neurodegeneration and promote regeneration in multiple sclerosis. Curr Drug Targets Immune Endocr Metabol Disord 5: 11–26

    PubMed  CAS  Google Scholar 

  48. Chunduru SK, Sutherland RM, Stewart GA et al. (1996) Exploitation of the Vbeta8.2 T cell receptor in protection against experimental autoimmune encephalomyelitis using a live vaccinia virus vector. J Immunol 156: 4940–4945

    PubMed  CAS  Google Scholar 

  49. Ciric B, Howe CL, Paz Soldan M et al. (2003) Human monoclonal IgM antibody promotes CNS myelin repair independent of Fc function. Brain Pathol 13: 608–616

    Article  PubMed  CAS  Google Scholar 

  50. Clements JM, Cossins JA, Wells GM et al. (1997) Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-alpha inhibitor. J Neuroimmunol 74: 85–94

    PubMed  CAS  Google Scholar 

  51. Cohen J (1995) IL-12 deaths: explanation and a puzzle. Science 270: 908

    PubMed  CAS  Google Scholar 

  52. Coles AJ, Wing MG, Molyneux P et al. (1999) Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 46: 296–304

    PubMed  CAS  Google Scholar 

  53. Columba-Cabezas S, Serafini B, Ambrosini E et al. (2002) Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J Neuroimmunol 130: 10–21

    PubMed  CAS  Google Scholar 

  54. Craner MJ, Damarjian TG, Liu S et al. (2005) Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia 49: 220–229

    PubMed  Google Scholar 

  55. Craner MJ, Lo AC, Black JA, Waxman SG (2003) Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination. Brain 126: 1552–1561

    PubMed  Google Scholar 

  56. Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23: 127–159

    PubMed  CAS  Google Scholar 

  57. Dello Russo C, Gavrilyuk V, Weinberg G et al. (2003) Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J Biol Chem 278: 5828–5836

    Google Scholar 

  58. Delorenze GN, Munger KL, Lennette ET et al. (2006) Epstein-Barr Virus and Multiple Sclerosis: Evidence of Association From a Prospective Study With Long-term Follow-up. Arch Neurol 63: 839–844

    PubMed  Google Scholar 

  59. Diab A, Deng C, Smith JD et al. (2002) Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12,14)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol 168: 2508–2515

    PubMed  CAS  Google Scholar 

  60. Dinarello CA, Thompson RC (1991) Blocking IL-1: interleukin 1 receptor antagonist in vivo and in vitro. Immunol Today 12: 404–410

    PubMed  CAS  Google Scholar 

  61. Dyke HJ, Montana JG (2002) Update on the therapeutic potential of PDE4 inhibitors. Expert Opin Investig Drugs 11: 1–13

    PubMed  CAS  Google Scholar 

  62. Ehrenreich H, Aust C, Krampe H et al. (2004) Erythropoietin: novel approaches to neuroprotection in human brain disease. Metab Brain Dis 19: 195–206

    PubMed  CAS  Google Scholar 

  63. Elices MJ (2002) BX-471 Berlex. Curr Opin Investig Drugs 3: 865–869

    PubMed  CAS  Google Scholar 

  64. Engelhardt B, Briskin MJ (2005) Therapeutic targeting of alpha 4-integrins in chronic inflammatory diseases: tipping the scales of risk towards benefit? Eur J Immunol 35: 2268–2273

    PubMed  CAS  Google Scholar 

  65. Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26: 485–495

    PubMed  CAS  Google Scholar 

  66. Farrell R, Heaney D, Giovannoni G (2005) Emerging therapies in multiple sclerosis. Expert Opin Emerg Drugs 10: 797–816

    PubMed  CAS  Google Scholar 

  67. Fassas A, Passweg JR, Anagnostopoulos A et al. (2002) Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. J Neurol 249: 1088–1097

    PubMed  CAS  Google Scholar 

  68. Ferrante P, Fusi ML, Saresella M et al. (1998) Cytokine production and surface marker expression in acute and stable multiple sclerosis: altered IL-12 production and augmented signaling lymphocytic activation molecule (SLAM)-expressing lymphocytes in acute multiple sclerosis. J Immunol 160: 1514–1521

    PubMed  CAS  Google Scholar 

  69. Filippi M (2002) The role of magnetic resonance imaging in the assessment of patients with established multiple sclerosis. Neurol Sci 23: 89–90

    PubMed  CAS  Google Scholar 

  70. Filippi M, Rovaris M, Rice GP et al. (2000) The effect of cladribine on T(1) ‚black hole‘ changes in progressive MS. J Neurol Sci 176: 42–44

    PubMed  CAS  Google Scholar 

  71. Fontoura P, Garren H, Steinman L (2005) Antigen-specific therapies in multiple sclerosis: going beyond proteins and peptides. Int Rev Immunol 24: 415–446

    PubMed  CAS  Google Scholar 

  72. Fox RJ, Ransohoff RM (2004) New directions in MS therapeutics: vehicles of hope. Trends Immunol 25: 632–636

    PubMed  CAS  Google Scholar 

  73. Frauwirth KA, Thompson CB (2002) Activation and inhibition of lymphocytes by costimulation. J Clin Invest 109: 295–299

    PubMed  CAS  Google Scholar 

  74. Friese MA, Montalban X, Willcox N et al. (2006) The value of animal models for drug development in multiple sclerosis. Brain 129: 1940–1952

    PubMed  Google Scholar 

  75. Frohman EM, Brannon K, Racke MK, Hawker K (2004) Mycophenolate mofetil in multiple sclerosis. Clin Neuropharmacol 27: 80–83

    PubMed  CAS  Google Scholar 

  76. Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis--the plaque and its pathogenesis. N Engl J Med 354: 942–955

    PubMed  CAS  Google Scholar 

  77. Fujimoto T, Sakoda S, Fujimura H, Yanagihara T (1999) Ibudilast, a phosphodiesterase inhibitor, ameliorates experimental autoimmune encephalomyelitis in Dark August rats. J Neuroimmunol 95: 35–42

    PubMed  CAS  Google Scholar 

  78. Fujino M, Funeshima N, Kitazawa Y et al. (2003) Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment. J Pharmacol Exp Ther 305: 70–77

    PubMed  CAS  Google Scholar 

  79. Gately MK, Renzetti LM, Magram J et al. (1998) The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 16: 495–521

    PubMed  CAS  Google Scholar 

  80. Genc K, Genc S, Baskin H, Semin I (2006) Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligodendrocytes. Physiol Res 55: 33–38

    PubMed  CAS  Google Scholar 

  81. Genc S, Koroglu TF, Genc K (2004) Erythropoietin as a novel neuroprotectant. Restor Neurol Neurosci 22: 105–119

    PubMed  CAS  Google Scholar 

  82. Germain RN, Stefanova I (1999) The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu Rev Immunol 17: 467–522

    PubMed  CAS  Google Scholar 

  83. Giuliani F, Fu SA, Metz LM, Yong VW (2005) Effective combination of minocycline and interferon-beta in a model of multiple sclerosis. J Neuroimmunol 165: 83–91

    PubMed  CAS  Google Scholar 

  84. Gold R, Havrdova E, Kappos L et al. (2006) Safety of a novel oral single-agent fumarate, BG00012, in patients with relapsing-remitting mutiple sclerosis: results of a phase 2 study. J Neurol 253: 144

    Google Scholar 

  85. Gonsette RE, Dubois B (2004) Pixantrone (BBR2778): a new immunosuppressant in multiple sclerosis with a low cardiotoxicity. J Neurol Sci 223: 81–86

    PubMed  CAS  Google Scholar 

  86. Goodkin DE, Shulman M, Winkelhake J et al. (2000) A phase I trial of solubilized DR2: MBP84–102 (AG284) in multiple sclerosis. Neurology 54: 1414–1420

    PubMed  CAS  Google Scholar 

  87. Gordon EJ, Myers KJ, Dougherty JP et al. (1995) Both anti-CD11a (LFA-1) and anti-CD11b (MAC-1) therapy delay the onset and diminish the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 62: 153–160

    PubMed  CAS  Google Scholar 

  88. Greter M, Heppner FL, Lemos MP et al. (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11: 328–334

    PubMed  CAS  Google Scholar 

  89. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239: 290–292

    PubMed  CAS  Google Scholar 

  90. Hohlfeld R, Wekerle H (2004) Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci U S A [Suppl 2] 101: 14599–14606

  91. Hohlfeld R, Wiendl H (2001) The ups and downs of multiple sclerosis therapeutics. Ann Neurol 49: 281–284

    PubMed  CAS  Google Scholar 

  92. Howard LM, Kohm AP, Castaneda CL, Miller SD (2005) Therapeutic blockade of TCR signal transduction and co-stimulation in autoimmune disease. Curr Drug Targets Inflamm Allergy 4: 205–216

    PubMed  CAS  Google Scholar 

  93. Howell MD, Winters ST, Olee T et al. (1989) Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides. Science 246: 668–670

    PubMed  CAS  Google Scholar 

  94. Huitinga I, Ruuls SR, Jung S et al. (1995) Macrophages in T cell line-mediated, demyelinating, and chronic relapsing experimental autoimmune encephalomyelitis in Lewis rats. Clin Exp Immunol 100: 344–351

    Article  PubMed  CAS  Google Scholar 

  95. Jiang H, Kashleva H, Xu LX et al. (1998) T cell vaccination induces T cell receptor Vbeta-specific Qa-1-restricted regulatory CD8(+) T cells. Proc Natl Acad Sci U S A 95: 4533–4537

    PubMed  CAS  Google Scholar 

  96. Jonsson S, Andersson G, Fex T et al. (2004) Synthesis and biological evaluation of new 1,2-dihydro-4-hydroxy-2-oxo-3-quinolinecarboxamides for treatment of autoimmune disorders: structure-activity relationship. J Med Chem 47: 2075–2088

    PubMed  Google Scholar 

  97. Kalkers NF, Barkhof F, Bergers E et al. (2002) The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler 8: 532–533

    PubMed  CAS  Google Scholar 

  98. Kappos L, Antel J, Comi G et al. (2006) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 355: 1124–1140

    PubMed  CAS  Google Scholar 

  99. Kappos L, Barkhof F, Desmet A (2005) The effect of oral temsirolimus on new magnetic resonance imaging scan lesions, brain atrophy, and the number of relapses in multiple sclerosis: results from a randomised, controlled clinical trial. J Neurol [Suppl 42] 252: 46–46

  100. Kappos L, Comi G, Panitch H et al. (2000) Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 6: 1176–1182

    PubMed  CAS  Google Scholar 

  101. Kappos L, Miller DH, MacManus DG et al. (2006) Efficacy of a novel oral single-agent fumarate, BG00012, in patients with relapsing-remitting multiple sclerosis: results of a phase 2 study. J Neurol 253: 27

    Google Scholar 

  102. Kawai T, Andrews D, Colvin RB et al. (2000) Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 6: 114

    CAS  Google Scholar 

  103. Keegan M, Konig F, McClelland R et al. (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366: 579–582

    PubMed  Google Scholar 

  104. Keeley KA, Rivey MP, Allington DR (2005) Natalizumab for the treatment of multiple sclerosis and Crohn’s disease. Ann Pharmacother 39: 1833–1843

    PubMed  CAS  Google Scholar 

  105. Kerschensteiner M, Stadelmann C, Dechant G et al. (2003) Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 53: 292–304

    PubMed  CAS  Google Scholar 

  106. Killestein J, Olsson T, Wallstrom E et al. (2002) Antibody-mediated suppression of Vbeta5.2/5.3(+) T cells in multiple sclerosis: results from an MRI-monitored phase II clinical trial. Ann Neurol 51: 467–474

    PubMed  CAS  Google Scholar 

  107. Kleinschmidt-DeMasters BK, Tyler KL (2005) Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 353: 369–374

    PubMed  CAS  Google Scholar 

  108. Kleinschnitz C, Schroeter M, Jander S, Stoll G (2004) Induction of granulocyte colony-stimulating factor mRNA by focal cerebral ischemia and cortical spreading depression. Brain Res Mol Brain Res 131: 73–78

    PubMed  CAS  Google Scholar 

  109. Klotz L, Schmidt M, Giese T et al. (2005) Proinflammatory stimulation and pioglitazone treatment regulate peroxisome proliferator-activated receptor gamma levels in peripheral blood mononuclear cells from healthy controls and multiple sclerosis patients. J Immunol 175: 4948–4955

    PubMed  CAS  Google Scholar 

  110. Kobata T, Azuma M, Yagita H, Okumura K (2000) Role of costimulatory molecules in autoimmunity. Rev Immunogenet 2: 74–80

    PubMed  CAS  Google Scholar 

  111. Kohm AP, Williams JS, Bickford AL et al. (2005) Treatment with nonmitogenic anti-CD3 monoclonal antibody induces CD4+ T cell unresponsiveness and functional reversal of established experimental autoimmune encephalomyelitis. J Immunol 174: 4525–4534

    PubMed  CAS  Google Scholar 

  112. Konno H, Yamamoto T, Iwasaki Y et al. (1989) Ia-expressing microglial cells in experimental allergic encephalomyelitis in rats. Acta Neuropathol (Berl) 77: 472–479

    Google Scholar 

  113. Korn T, Magnus T, Toyka K, Jung S (2004) Modulation of effector cell functions in experimental autoimmune encephalomyelitis by leflunomide--mechanisms independent of pyrimidine depletion. J Leukoc Biol 76: 950–960

    PubMed  CAS  Google Scholar 

  114. Kornek B, Storch MK, Bauer J et al. (2001) Distribution of a calcium channel subunit in dystrophic axons in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 124: 1114–1124

    PubMed  CAS  Google Scholar 

  115. Krumbholz M, Theil D, Derfuss T et al. (2005) BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 201: 195–200

    PubMed  CAS  Google Scholar 

  116. Kwak B, Mulhaupt F, Myit S, Mach F (2000) Statins as a newly recognized type of immunomodulator. Nat Med 6: 1399–1402

    PubMed  CAS  Google Scholar 

  117. Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7: 115–121

    PubMed  CAS  Google Scholar 

  118. Lebwohl M, Tyring SK, Hamilton TK et al. (2003) A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N Engl J Med 349: 2004–2013

    PubMed  CAS  Google Scholar 

  119. Lennon VA, Kryzer TJ, Pittock SJ et al. (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202: 473–477

    PubMed  CAS  Google Scholar 

  120. Li W, Maeda Y, Yuan RR et al. (2004) Beneficial effect of erythropoietin on experimental allergic encephalomyelitis. Ann Neurol 56: 767–777

    PubMed  CAS  Google Scholar 

  121. Lim ET, Berger T, Reindl M et al. (2005) Anti-myelin antibodies do not allow earlier diagnosis of multiple sclerosis. Mult Scler 11: 492–494

    PubMed  CAS  Google Scholar 

  122. Lindsey JW, Hodgkinson S, Mehta R et al. (1994) Repeated treatment with chimeric anti-CD4 antibody in multiple sclerosis. Ann Neurol 36: 183–189

    PubMed  CAS  Google Scholar 

  123. Linsley PS, Brady W, Urnes M et al. (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174: 561–569

    PubMed  CAS  Google Scholar 

  124. Lo AC, Saab CY, Black JA, Waxman SG (2003) Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. J Neurophysiol 90: 3566–3571

    PubMed  CAS  Google Scholar 

  125. Lovett-Racke AE, Bittner P, Cross AH et al. (1998) Regulation of experimental autoimmune encephalomyelitis with insulin-like growth factor (IGF-1) and IGF-1/IGF-binding protein-3 complex (IGF-1/IGFBP3). J Clin Invest 101: 1797–1804

    PubMed  CAS  Google Scholar 

  126. Lublin F (1999) A phase II trial of anti-CD11/CD18 monoclonal antibody in acute exacerbations of MS. Neurology 52 [Suppl 2]

  127. Lucchinetti C, Bruck W, Parisi J et al. (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47: 707–717

    PubMed  CAS  Google Scholar 

  128. Maeda A, Sobel RA (1996) Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 55: 300–309

    PubMed  CAS  Google Scholar 

  129. Magliozzi R, Columba-Cabezas S, Serafini B, Aloisi F (2004) Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 148: 11–23

    PubMed  CAS  Google Scholar 

  130. Magnus T, Schreiner B, Korn T et al. (2005) Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS. J Neurosci 25: 2537–2546

    PubMed  CAS  Google Scholar 

  131. Mancardi GL, Saccardi R, Filippi M et al. (2001) Autologous hematopoietic stem cell transplantation suppresses Gd-enhanced MRI activity in MS. Neurology 57: 62–68

    PubMed  CAS  Google Scholar 

  132. Mandala S, Hajdu R, Bergstrom J et al. (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296: 346–349

    PubMed  CAS  Google Scholar 

  133. Marecki S, Kirkpatrick P (2004) Efalizumab. Nat Rev Drug Discov 3: 473–474

    PubMed  CAS  Google Scholar 

  134. Marracci GH, McKeon GP, Marquardt WE et al. (2004) Alpha lipoic acid inhibits human T-cell migration: implications for multiple sclerosis. J Neurosci Res 78: 362–370

    PubMed  CAS  Google Scholar 

  135. Matloubian M, Lo CG, Cinamon G et al. (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427: 355–360

    PubMed  CAS  Google Scholar 

  136. McDonald WI, Compston A, Edan G et al. (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50: 121–127

    PubMed  CAS  Google Scholar 

  137. Meden H, Mielke S, Marx D et al. (1997) Hormonal treatment with sex steroids in women is associated with lower p105 serum concentrations. Anticancer Res 17: 3075–3077

    PubMed  CAS  Google Scholar 

  138. Meinl E, Weber F, Drexler K et al. (1993) Myelin basic protein-specific T lymphocyte repertoire in multiple sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones. J Clin Invest 92: 2633–2643

    Article  PubMed  CAS  Google Scholar 

  139. Metz LM, Zhang Y, Yeung M et al. (2004) Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol 55: 756

    PubMed  Google Scholar 

  140. Miller DH, Khan OA, Sheremata WA et al. (2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 348: 15–23

    PubMed  CAS  Google Scholar 

  141. Monson NL, Cravens PD, Frohman EM et al. (2005) Effect of rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch Neurol 62: 258–264

    PubMed  Google Scholar 

  142. Morini M, Roccatagliata L, Dell’Eva R et al. (2004) Alpha-lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis. J Neuroimmunol 148: 146–153

    PubMed  CAS  Google Scholar 

  143. Muller H, Hofer S, Kaneider N et al. (2005) The immunomodulator FTY720 interferes with effector functions of human monocyte-derived dendritic cells. Eur J Immunol 35: 533–545

    PubMed  Google Scholar 

  144. Muraro PA, Douek DC, Packer A et al. (2005) Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med 201: 805–816

    PubMed  CAS  Google Scholar 

  145. Nash RA, Bowen JD, McSweeney PA et al. (2003) High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood 102: 2364–2372

    PubMed  CAS  Google Scholar 

  146. Nashmi R, Fehlings MG (2001) Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Res Brain Res Rev 38: 165–191

    PubMed  CAS  Google Scholar 

  147. Neuhaus O, Strasser-Fuchs S, Fazekas F et al. (2002) Statins as immunomodulators: comparison with interferon-beta 1b in MS. Neurology 59: 990–997

    PubMed  CAS  Google Scholar 

  148. Neumann H, Medana IM, Bauer J, Lassmann H (2002) Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 25: 313–319

    PubMed  CAS  Google Scholar 

  149. Niino M, Bodner C, Simard ML et al. (2006) Natalizumab effects on immune cell responses in multiple sclerosis. Ann Neurol 59: 748–754

    PubMed  CAS  Google Scholar 

  150. Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343: 938–952

    PubMed  CAS  Google Scholar 

  151. Noseworthy JH, Wolinsky JS, Lublin FD et al. (2000) Linomide in relapsing and secondary progressive MS: part I: trial design and clinical results. North American Linomide Investigators [see comments]. Neurology 54: 1726–1733

    PubMed  CAS  Google Scholar 

  152. O’Connor PW, Li D, Freedman MS (2006) A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology 66: 894–900

    Google Scholar 

  153. Paemen L, Martens E, Norga K et al. (1996) The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochem Pharmacol 52: 105–111

    PubMed  CAS  Google Scholar 

  154. Paolillo A, Coles AJ, Molyneux PD et al. (1999) Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H. Neurology 53: 751–757

    PubMed  CAS  Google Scholar 

  155. Pershadsingh HA (2004) Peroxisome proliferator-activated receptor-gamma: therapeutic target for diseases beyond diabetes: quo vadis? Expert Opin Investig Drugs 13: 215–228

    Article  PubMed  CAS  Google Scholar 

  156. Pershadsingh HA, Heneka MT, Saini R et al. (2004) Effect of pioglitazone treatment in a patient with secondary multiple sclerosis. J Neuroinflammation 1: 3

    PubMed  Google Scholar 

  157. Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6: 67–70

    PubMed  CAS  Google Scholar 

  158. Platten M, Steinman L (2005) Multiple sclerosis: trapped in deadly glue. Nat Med 11: 252–253

    PubMed  CAS  Google Scholar 

  159. Polman C, Barkhof F, Sandberg-Wollheim M et al. (2005) Treatment with laquinimod reduces development of active MRI lesions in relapsing MS. Neurology 64: 987–991

    PubMed  CAS  Google Scholar 

  160. Polman CH, O’Connor PW, Havrdova E et al. (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354: 899–910

    PubMed  CAS  Google Scholar 

  161. Pryce G, Ahmed Z, Hankey DJ et al. (2003) Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain 126: 2191–2202

    PubMed  Google Scholar 

  162. Putheti P, Pettersson A, Soderstrom M et al. (2004) Circulating CD4+CD25+ T regulatory cells are not altered in multiple sclerosis and unaffected by disease-modulating drugs. J Clin Immunol 24: 155–161

    PubMed  CAS  Google Scholar 

  163. Qin Y, Duquette P, Zhang Y et al. (2003) Intrathecal B-cell clonal expansion, an early sign of humoral immunity, in the cerebrospinal fluid of patients with clinically isolated syndrome suggestive of multiple sclerosis. Lab Invest 83: 1081–1088

    PubMed  Google Scholar 

  164. Ransohoff RM (2005) Natalizumab and PML. Nat Neurosci 8: 1275

    PubMed  CAS  Google Scholar 

  165. Rice GP, Filippi M, Comi G (2000) Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI-Study Group. Neurology 54: 1145–1155

    PubMed  CAS  Google Scholar 

  166. Rizvi SA, Bashir K (2004) Other therapy options and future strategies for treating patients with multiple sclerosis. Neurology 12 [Suppl 6] (63): 47–54

  167. Rumbach L, Racadot E, Armspach JP et al. (1996) Biological assessment and MRI monitoring of the therapeutic efficacy of a monoclonal anti-T CD4 antibody in multiple sclerosis patients. Mult Scler 1: 207–212

    PubMed  CAS  Google Scholar 

  168. Rutella S, Zavala F, Danese S et al. (2005) Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol 175: 7085–7091

    PubMed  CAS  Google Scholar 

  169. Saccardi R, Mancardi GL, Solari A et al. (2005) Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood 105: 2601–2607

    PubMed  CAS  Google Scholar 

  170. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6: 345–352

    PubMed  CAS  Google Scholar 

  171. Salomon B, Bluestone JA (2001) Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19: 225–252

    PubMed  CAS  Google Scholar 

  172. Samijn JP, Boekhorst PA te, Mondria T et al. (2006) Intense T cell depletion followed by autologous bone marrow transplantation for severe multiple sclerosis. J Neurol Neurosurg Psychiatry 77: 46–50

    PubMed  CAS  Google Scholar 

  173. Saruhan-Direskeneli G, Weber F, Meinl E et al. (1993) Human T cell autoimmunity against myelin basic protein: CD4+ cells recognizing epitopes of the T cell receptor beta chain from a myelin basic protein-specific T cell clone. Eur J Immunol 23: 530–536

    PubMed  CAS  Google Scholar 

  174. Scheinfeld N (2006) Efalizumab: a review of events reported during clinical trials and side effects. Expert Opin Drug Saf 5: 197–209

    PubMed  CAS  Google Scholar 

  175. Schimrigk S, Brune N, Hellwig K et al. (2006) Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur J Neurol 13: 604–610

    PubMed  CAS  Google Scholar 

  176. Schneider-Gold C, Hartung HP, Gold R (2006) Mycophenolate mofetil and tacrolimus: new therapeutic options in neuroimmunological diseases. Muscle Nerve 34: 284–291

    PubMed  CAS  Google Scholar 

  177. Scott GS, Spitsin SV, Kean RB et al. (2002) Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors. Proc Natl Acad Sci U S A 99: 16303–16308

    PubMed  CAS  Google Scholar 

  178. Sehgal SN (2003) Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 35: 7S–14S

    PubMed  CAS  Google Scholar 

  179. Sellebjerg F, Sorensen TL (2003) Chemokines and matrix metalloproteinase-9 in leukocyte recruitment to the central nervous system. Brain Res Bull 61: 347–355

    PubMed  CAS  Google Scholar 

  180. Sicotte NL, Giesser BS, Tandon V (2006) A pilot study of testosterone treatment for men with relapsing remitting multiple sclerosis. Neurology 66: A30

    Google Scholar 

  181. Sicotte NL, Liva SM, Klutch R et al. (2002) Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann Neurol 52: 421–428

    PubMed  CAS  Google Scholar 

  182. Sidiropoulos PI, Boumpas DT (2004) Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients. Lupus 13: 391–397

    PubMed  CAS  Google Scholar 

  183. Simmons DL, Buckley CD (2005) Some new, and not so new, anti-inflammatory targets. Curr Opin Pharmacol 5: 394–397

    CAS  Google Scholar 

  184. Sipe JC (2005) Cladribine for multiple sclerosis: review and current status. Expert Rev Neurother 5: 721–727

    PubMed  CAS  Google Scholar 

  185. Sipe JC, Romine JS, Koziol J et al. (1997) Cladribine improves relapsing-remitting MS: a double blind placebo controlled study. Neurology 48: A340

    Google Scholar 

  186. Sipe JC, Romine JS, Koziol JA et al. (1994) Cladribine in treatment of chronic progressive multiple sclerosis [see comments]. Lancet 344: 9–13

    PubMed  CAS  Google Scholar 

  187. Sjoo F, Hassan Z, Abedi-Valugerdi M et al. (2006) Myeloablative and immunosuppressive properties of treosulfan in mice. Exp Hematol 34: 115–121

    PubMed  Google Scholar 

  188. Smilek DE, Wraith DC, Hodgkinson S et al. (1991) A single amino acid change in a myelin basic protein peptide confers the capacity to prevent rather than induce experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 88: 9633–9637

    PubMed  CAS  Google Scholar 

  189. Sospedra M, Martin R (2005) Antigen-specific therapies in multiple sclerosis. Int Rev Immunol 24: 393–413

    PubMed  CAS  Google Scholar 

  190. Steinman L (2005) Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat Rev Drug Discov 4: 510–518

    PubMed  CAS  Google Scholar 

  191. Steinman L (2001) Multiple sclerosis: a two-stage disease. Nat Immunol 2: 762–764.

    PubMed  CAS  Google Scholar 

  192. Storer PD, Xu J, Chavis J, Drew PD (2005) Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 161: 113–122

    PubMed  CAS  Google Scholar 

  193. Stuve O, Youssef S, Weber MS et al. (2006) Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J Clin Invest 116: 1037–1044

    PubMed  CAS  Google Scholar 

  194. Suntharalingam G, Perry MR, Ward S et al. (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355: 1018–1028

    PubMed  CAS  Google Scholar 

  195. Thoenen H, Sendtner M (2002) Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat Neurosci 5 [Suppl]: 1046–1050

    Google Scholar 

  196. Trebst C, Stangel M (2006) Promotion of remyelination by immunoglobulins: implications for the treatment of multiple sclerosis. Curr Pharm Des 12: 241–249

    PubMed  CAS  Google Scholar 

  197. Tubridy N, Behan PO, Capildeo R et al. (1999) The effect of anti-alpha 4 integrin antibody on brain lesion activity in MS. Neurology 53: 466–472

    PubMed  CAS  Google Scholar 

  198. Utset TO, Auger JA, Peace D et al. (2002) Modified anti-CD3 therapy in psoriatic arthritis: a phase I/II clinical trial. J Rheumatol 29: 1907–1913

    PubMed  CAS  Google Scholar 

  199. Van Assche G, Van Ranst M, Sciot R et al. (2005) Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Engl J Med 353: 362–368

    Google Scholar 

  200. Van der Aa A, Hellings N, Medaer R et al. (2003) T cell vaccination in multiple sclerosis patients with autologous CSF-derived activated T cells: results from a pilot study. Clin Exp Immunol 131: 155–168

    Google Scholar 

  201. Oosten BW van, Barkhof F, Truyen L et al. (1996) Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47: 1531–1534

    PubMed  Google Scholar 

  202. Oosten BW van, Lai M, Barkhof F et al. (1996) A phase II trial of anti-CD4 antibodies in the treatment of multiple sclerosis. Mult Scler 1: 339–342

    PubMed  Google Scholar 

  203. Vandenbark AA, Chou YK, Whitham R et al. (1996) Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial. Nature Medicine 2: 1109–1115

    PubMed  CAS  Google Scholar 

  204. Vennekamp J, Wulff H, Beeton C et al. (2004) Kv1.3-blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. Mol Pharmacol 65: 1364–1374

    PubMed  CAS  Google Scholar 

  205. Vermersch P, Waucquier N, Bourteel H (2004) Treatment of multiple sclerosis with a combination of interferon beta-1a (Avonex) and Mycophenolate mofetil (Cellcept): Results of a phase II clinical trial. Neurology 62: A259

    Google Scholar 

  206. Vianna-Jorge R, Suarez-Kurtz G (2004) Potassium channels in T lymphocytes: therapeutic targets for autoimmune disorders? BioDrugs 18: 329–341

    PubMed  CAS  Google Scholar 

  207. Villoslada P, Hauser SL, Bartke I et al. (2000) Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 191: 1799–1806

    PubMed  CAS  Google Scholar 

  208. Vincenti F, Kirkman R, Light S et al. (1998) Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med 338: 161–165

    PubMed  CAS  Google Scholar 

  209. Vollmer T, Key L, Durkalski V et al. (2004) Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 363: 1607–1608

    PubMed  CAS  Google Scholar 

  210. Waldmann H (1989) Manipulation of T-cell responses with monoclonal antibodies. Annu Rev Immunol 7: 407–444

    PubMed  CAS  Google Scholar 

  211. Warren KG, Catz I, Wucherpfennig KW (1997) Tolerance induction to myelin basic protein by intravenous synthetic peptides containing epitope P85 VVHFFKNIVTP96 in chronic progressive multiple sclerosis. J Neurol Sci 152: 31–38

    PubMed  CAS  Google Scholar 

  212. Waxman SG, Craner MJ, Black JA (2004) Na+ channel expression along axons in multiple sclerosis and its models. Trends Pharmacol Sci 25: 584–591

    PubMed  CAS  Google Scholar 

  213. Weiner HL, Mackin GA, Matsui M et al. (1993) Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259: 1321–1324

    PubMed  CAS  Google Scholar 

  214. Weinshenker BG, Bass B, Karlik S et al. (1991) An open trial of OKT3 in patients with multiple sclerosis. Neurology 41: 1047–1052

    PubMed  CAS  Google Scholar 

  215. Weissert R, Wiendl H, Pfrommer H et al. (2003) Action of treosulfan in myelin-oligodendrocyte-glycoprotein-induced experimental autoimmune encephalomyelitis and human lymphocytes. J Neuroimmunol 144: 28–37

    PubMed  CAS  Google Scholar 

  216. Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50: 169–180

    PubMed  CAS  Google Scholar 

  217. Wiendl H, Hohlfeld R (2002) Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 16: 183–200

    PubMed  CAS  Google Scholar 

  218. Wiendl H, Kieseier BC, Weissert R et al. (2007) Treatment of active secondary progressive multiple sclerosis with treosulfan: an open label pilot study. J Neurol (in press)

  219. Willenborg DO, Staykova MA, Miyasaka M (1996) Short term treatment with soluble neuroantigen and anti-CD11a (LFA-1) protects rats against autoimmune encephalomyelitis: treatment abrogates autoimmune disease but not autoimmunity. J Immunol 157: 1973–1980

    PubMed  CAS  Google Scholar 

  220. Yadav V, Marracci G, Lovera J et al. (2005) Lipoic acid in multiple sclerosis: a pilot study. Mult Scler 11: 159–165

    PubMed  CAS  Google Scholar 

  221. Yong VW, Wells J, Giuliani F et al. (2004) The promise of minocycline in neurology. Lancet Neurol 3: 744–751

    PubMed  Google Scholar 

  222. Yousry TA, Major EO, Ryschkewitsch C et al. (2006) Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 354: 924–933

    PubMed  CAS  Google Scholar 

  223. Youssef S, Stuve O, Patarroyo JC et al. (2002) The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420: 78–84

    PubMed  CAS  Google Scholar 

  224. Zajicek J, Fox P, Sanders H et al. (2003) Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet 362: 1517–1526

    PubMed  CAS  Google Scholar 

  225. Zang YC, Hong J, Rivera VM et al. (2000) Preferential recognition of TCR hypervariable regions by human anti-idiotypic T cells induced by T cell vaccination. J Immunol 164: 4011–4017

    PubMed  CAS  Google Scholar 

  226. Zipp F, Hartung HP, Hillert J et al. (2005) Blockade of chemokine receptor in multiple sclerosis patients. Mult Scler 11: S13

    Google Scholar 

  227. Zipp F, Krammer PH, Weller M (1999) Immune (dys)regulation in multiple sclerosis: role of the CD95-CD95 ligand system. Immunol Today 20: 550–554

    PubMed  CAS  Google Scholar 

Download references

Danksagung

Wir danken Frau Anke Bauer (Würzburg) für die Überarbeitung und Editierung des Manuskriptes.

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Wiendl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinschnitz, C., Meuth, S., Kieseier, B. et al. Multiple-Sklerose-Update zur Pathophysiologie und neuen immuntherapeutischen Ansätzen. Nervenarzt 78, 883–911 (2007). https://doi.org/10.1007/s00115-007-2261-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-007-2261-9

Schlüsselwörter

Keywords

Navigation