Skip to main content
Log in

Ludwigshafener Osteoporosescreeningbogen (LOS-Bogen)

Resultat aus der Evaluation anamnestischer Risikofaktoren in der Osteoporosediagnostik

The Ludwigshafen Osteoporosis Screening Questionnaire (LOS Questionnaire)

Result of the evaluation of anamnestic risk factors in osteoporosis diagnostics

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Osteoporose stellt eine der weltweit führenden Gesundheitsproblematiken dar und wurde daher in die WHO-Liste der 10 schwerwiegendsten Erkrankungen aufgenommen. Trotzdem erfolgt immer noch sehr häufig die Diagnosestellung erst nach stattgehabter erster osteoporotischer Fraktur, was zum einen an der mangelnden Patientenaufklärung, aber auch an der fehlenden Kostenübernahme der Kostenerstatter für frühzeitige Screeningmethoden liegt.

Material und Methoden

In unserer Studie von 78 Patienten mit metaphysären Frakturen langer Röhrenknochen untersuchten wir die Korrelation zwischen anamnestischen Risikofaktoren, sowie knochenspezifischen Stoffwechselparametern als mögliche diagnostische Instrumente und der Knochendichte (BMD „bone morphogenic density“). Zudem soll die hohe Prävelenz der Osteoporose bei Patienten mit metaphysären Frakturen demonstriert werden.

Ergebnisse

In der DXA-Messung („dual X-ray absorption densitometry“) zeigten 43,6% unserer Patienten eine manifeste Osteoporose und 76,9% der Patienten hatten bereits eine verminderte Knochendichte. Unser modifizierter LOS- (Ludwigshafener Osteoporosescreening-)Fragebogen zeigte eine hochsignifikante Korrelation (p=0,01) mit verminderter BMD, wogegen 7 knochenspezifische Laborparameter eine signifikante Korrelation (p=0,046) aufwiesen.

Schlussfolgerung

Anamnestische Risikofaktoren korrelieren stärker mit reduzierter Knochendichte als knochenspezifische Stoffwechselparameter. Der an die Empfehlungen der DVO angelehnte Fragebogen LOS-Bogen kann als kosteneffizientes erstes diagnostisches Instrument für die Identifikation osteoporotischer Patienten dienen.

Abstract

Background

Osteoporosis is a major health problem worldwide and is included in the WHO list of the top ten major diseases. However, it is often undiagnosed until the first fracture occurs, due to inadequate patient education and lack of insurance coverage for screening tests.

Methods and material

In our study of 78 patients with metaphyseal long bone fractures, we searched for a correlation between anamnestic risk factors, bone-specific laboratory values, and the bone morphogenic density (BMD). Each indicator was examined as a possible diagnostic instrument for osteoporosis. The secondary aim of this study was to demonstrate the high prevalence of osteoporosis in patients with metaphyseal fractures.

Results

Of our fracture patients 76.9% had decreased bone density and 43.6% showed manifest osteoporosis in DXA (densitometry) measurements. Our modified LOS Questionnaire, identifying anamnestic risk factors, correlated highly significantly (p=0.01) with reduced BMD, whereas seven bone-specific laboratory values (p=0.046) correlated significantly.

Conclusion

Anamnestic risk factors correlate with pathological BMD more than bone-specific laboratory values. The LOS Questionnaire used in this study would therefore function as a cost-effective primary diagnostic instrument for identification of osteoporosis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 6

Literatur

  1. Macdonald HM, New SA, Campbell MK, Reid DM (2005) Influence of weight and weight change on bone loss in perimenopausal and early postmenopausal Scottish women. Osteoporos Int 16:163–171

    Article  PubMed  Google Scholar 

  2. Cooper C (1999) Epidemiology of osteoporosis. Osteoporos Int 9–2:2–8

    Google Scholar 

  3. Reginster JY, Burlet N (2006) Osteoporosis: a still increasing prevalence. Bone 38:4–9

    Article  Google Scholar 

  4. Haussler B, Gothe H, Gol D et al (2001) Epidemiology, treatment and costs of osteoporosis in Germany – the bone EVA study. Osteoporos Int 18:77–84

    Article  Google Scholar 

  5. Macdonald HM, New SA, Golden MH et al (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am J Clin Nutr 79:155–165

    PubMed  CAS  Google Scholar 

  6. Minne HW, Pfeifer M, Begerow B et al (2002) Osteoporosis. Orthopade 31:681–979

    Article  PubMed  CAS  Google Scholar 

  7. Gotte S, Dittmar K (2001) Epidemiology and costs of osteoporosis. Orthopade 30:402–404

    Article  PubMed  CAS  Google Scholar 

  8. Kanis JA, Johnell O, Oden A et al (2001) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 12:989–995

    Article  PubMed  CAS  Google Scholar 

  9. Pfeilschifter J (2009) Osteoporosis – current diagnostics and therapy. Med Klin (Munich) 104:632–643

    Google Scholar 

  10. Guder WG, Nolte J (2005) Das Laborbuch für Klinik und Praxis, 1. Aufl. Elsevier, München

  11. Ledger GA, Burritt MF, Kao PC et al (1995) Role of parathyroid hormone in mediating nocturnal and age-related increases in bone resorption. J Clin Endocrinol Metab 80:3304–3310

    Article  PubMed  CAS  Google Scholar 

  12. Christenson RH (1997) Biochemical markers of bone metabolism: an overview. Clin Biochem 30:573–593

    Article  PubMed  CAS  Google Scholar 

  13. Kansal S, Fried L (2010) Bone disease in elderly individuals with CKD. Adv Chronic Kidney Dis 17:41–51

    Article  Google Scholar 

  14. Tucker KL, Hannan MT, Qiao N et al (2005) Low plasma vitamin B12 is associated with lower BMD: the framingham osteoporosis study. J Bone Miner Res 20:152–158

    Article  PubMed  CAS  Google Scholar 

  15. Holstein JH, Herrmann M, Splett C et al (2009) Low serum folate and vitamin B6 are associated with an altered cancellous bone structure in humans. Am J Clin Nutr 90:1440–1445

    Article  PubMed  CAS  Google Scholar 

  16. Vogel T, Dobler T, Bitterling H et al (2005) Osteoporosis in traumatology. Prevalence and management. Unfallchirurg 108:356–364

    Article  PubMed  CAS  Google Scholar 

  17. Hegeman JH, Willemsen G, Van Nieuwpoort J et al (2004) Effective tracing of osteoporosis at a fracture and osteoporosis clinic in Groningen; an analysis of the first 100 patients. Ned Tijdschr Geneeskd 148:2180–2185

    PubMed  CAS  Google Scholar 

  18. Brask-Lindemann D, Cadarette SM, Eskildsen P, Abrahamsen B (2010) Osteoporosis pharmacotherapy following bone densitometry: importance of patient beliefs and understanding of DXA results. Osteoporos Int. doi: 10.1007/s00198-101-1365-1364

  19. Berry SD, Misra D, Hannan M, Kiel DP (2010) Low acceptance of treatment in the elderly for the secondary prevention of osteoporotic fracture in the acute rehabilitation setting. Aging Clin Exp Res 22:231–237

    PubMed  CAS  Google Scholar 

  20. Wehren LE, Siris ES (2004) Beyond bone mineral density: can existing clinical risk assessment instruments identify women at increased risk of osteoporosis? J Intern Med 256:375–380

    Article  PubMed  CAS  Google Scholar 

  21. Ismail AA, Pye SR, Cockerill WC et al (2002) Incidence of limb fracture across Europe: results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 13:565–571

    Article  PubMed  CAS  Google Scholar 

  22. Cadarette SM, Jaglal SB, Kreiger N et al (2000) Development and validation of the osteoporosis risk assessment instrument to facilitate selection of women for bone densitometry. CMAJ 162:1289–1294

    PubMed  CAS  Google Scholar 

  23. Joakimsen RM, Fonnebo V, Magnus JH et al (1998) The tromso study: body height, body mass index and fractures. Osteoporos Int 8:436–442

    Article  PubMed  CAS  Google Scholar 

  24. Kanis JA, Borgstrom F, De Laet C et al (2005) Assessment of fracture risk. Osteoporos Int 16:581–589

    Article  PubMed  Google Scholar 

  25. Bainbridge KE, Sowers M, Lin X, Harlow SD (2004) Risk factors for low bone mineral density and the 6-year rate of bone loss among premenopausal and perimenopausal women. Osteoporos Int 15:439–446

    Article  PubMed  Google Scholar 

  26. Krall EA, Dawson-Hughes B (1999) Smoking increases bone loss and decreases intestinal calcium absorption. J Bone Miner Res 14:215–220

    Article  PubMed  CAS  Google Scholar 

  27. Law MR, Hackshaw AK (1997) A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ 315:841–846

    Article  PubMed  CAS  Google Scholar 

  28. Vestergaard P, Rejnmark L, Mosekilde L (2004) Fracture risk associated with use of antiepileptic drugs. Epilepsia 45:1330–1337

    Article  PubMed  CAS  Google Scholar 

  29. Petty SJ, O’Brien TJ, Wark JD (2007) Anti-epileptic medication and bone health. Osteoporos Int 18:129–142

    Article  PubMed  CAS  Google Scholar 

  30. Schmitz B (2005) Depression and mania in patients with epilepsy. Epilepsia 46(Suppl 4):45–49

    Article  PubMed  Google Scholar 

  31. Cummings SR, Nevitt MC, Browner WS et al (1995) Risk factors for hip fracture in white women. Study of osteoporotic fractures research group. N Engl J Med 332:767–773

    Article  PubMed  CAS  Google Scholar 

  32. Van Der Klift M, De Laet CE, McCloskey EV et al (2004) Risk factors for incident vertebral fractures in men and women: the Rotterdam Study. J Bone Miner Res 19:1172–1180

    Article  Google Scholar 

  33. Belaya ZE, Melnichenko GA, Rozhinskaya LY et al (2007) Subclinical hyperthyroidism of variable etiology and its influence on bone in postmenopausal women. Hormones (Athens) 6:62–70

    Google Scholar 

  34. Morris MS (2007) The association between serum thyroid-stimulating hormone in its reference range and bone status in postmenopausal American women. Bone 40:1128–1134

    Article  PubMed  CAS  Google Scholar 

  35. Biondi B, Palmieri EA, Klain M et al (2005) Subclinical hyperthyroidism: clinical features and treatment options. Eur J Endocrinol 152:1–9

    Article  PubMed  CAS  Google Scholar 

  36. Kanatani M, Sugimoto T, Sowa H et al (2004) Thyroid hormone stimulates osteoclast differentiation by a mechanism independent of RANKL-RANK interaction. J Cell Physiol 201:17–25

    Article  PubMed  CAS  Google Scholar 

  37. Garnero P, Vassy V, Bertholin A et al (1994) Markers of bone turnover in hyperthyroidism and the effects of treatment. J Clin Endocrinol Metab 78:955–959

    Article  PubMed  CAS  Google Scholar 

  38. Dargent-Molina P, Poitiers F, Breart G (2000) In elderly women weight is the best predictor of a very low bone mineral density: evidence from the EPIDOS study. Osteoporos Int 11:881–888

    Article  PubMed  CAS  Google Scholar 

  39. Bauman WA, Spungen AM, Wang J et al (1999) Continuous loss of bone during chronic immobilization: a monozygotic twin study. Osteoporos Int 10:123–127

    Article  PubMed  CAS  Google Scholar 

  40. Hearn AP, Silber E (2010) Osteoporosis in multiple sclerosis. Mult Scler 16:1031–1043

    Article  PubMed  Google Scholar 

  41. Binkley N, Ramamurthy R, Krueger D (2010) Low vitamin D status: definition, prevalence, consequences, and correction. Endocrinol Metab Clin North Am 39:287–301

    Article  PubMed  CAS  Google Scholar 

  42. Sitges-Serra A, Garcia L, Prieto R et al (2010) Effect of parathyroidectomy for primary hyperparathyroidism on bone mineral density in postmenopausal women. Br J Surg 97:1013–1019

    Article  PubMed  CAS  Google Scholar 

  43. Giusti A, Barone A, Pioli G et al (2010) Heterogeneity in serum 25-hydroxy-vitamin D response to cholecalciferol in elderly women with secondary hyperparathyroidism and vitamin D deficiency. J Am Geriatr Soc 58:1489–1495

    Article  PubMed  Google Scholar 

  44. Diaz-Martin MA, Traba ML, De La Piedra C et al (1999) Aminoterminal propeptide of type I collagen and bone alkaline phosphatase in the study of bone metastases associated with prostatic carcinoma. Scand J Clin Lab Invest 59:125–132

    Article  PubMed  CAS  Google Scholar 

  45. Garnero P, Vergnaud P, Hoyle N (2008) Evaluation of a fully automated serum assay for total N-terminal propeptide of type I collagen in postmenopausal osteoporosis. Clin Chem 54:188–196

    Article  PubMed  CAS  Google Scholar 

  46. Nishizawa Y, Nakamura T, Ohta H et al (2005) Guidelines for the use of biochemical markers of bone turnover in osteoporosis (2004). J Bone Miner Metab 23:97–104

    Article  PubMed  Google Scholar 

  47. Raisz LG (2005) Clinical practice. Screening for osteoporosis. N Engl J Med 353:164–171

    Article  PubMed  CAS  Google Scholar 

  48. Seibel MJ (2005) Clinical use of markers of bone turnover in metastatic bone disease. Nat Clin Pract Oncol 2:504–517

    Article  PubMed  CAS  Google Scholar 

  49. Leboff MS, Narweker R, Lacroix A et al (2009) Homocysteine levels and risk of hip fracture in postmenopausal women. J Clin Endocrinol Metab 94:1207–1213

    Article  PubMed  CAS  Google Scholar 

  50. Yilmaz N, Eren E (2009) Homocysteine oxidative stress and relation to bone mineral density in post-menopausal osteoporosis. Aging Clin Exp Res 21:353–357

    PubMed  CAS  Google Scholar 

  51. Krivosikova Z, Krajcovicova-Kudlackova M, Spustova V et al (2010) The association between high plasma homocysteine levels and lower bone mineral density in Slovak women: the impact of vegetarian diet. Eur J Nutr 49:147–153

    Article  PubMed  CAS  Google Scholar 

  52. Herrmann, Herrmann M, Joseph J, Tyagi SC (2007) Homocysteine, brain natriuretic peptide and chronic heart failure: a critical review. Clin Chem Lab Med 45:1633–1644

    PubMed  CAS  Google Scholar 

  53. Lambert JK, Zaidi M, Mechanick JL (2011) Male osteoporosis: epidemiology and the pathogenesis of aging bones. Curr Osteoporos Rep 9(4):229–236

    Article  PubMed  Google Scholar 

Download references

Interessenskonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Wölfl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wölfl, C., Takur, C., Moghaddam, A. et al. Ludwigshafener Osteoporosescreeningbogen (LOS-Bogen). Unfallchirurg 116, 144–150 (2013). https://doi.org/10.1007/s00113-011-2133-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-011-2133-4

Schlüsselwörter

Keywords

Navigation