Skip to main content
Log in

Amplitudenintegriertes Elektroenzephalogramm

Zerebrales Monitoring bei Frühgeborenen

Amplitude-integrated electroencephalogram

Cerebral monitoring in preterm infants

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Der klinische Fokus bei Frühgeborenen richtet sich angesichts der verbesserten perinatalen Überlebensraten auf eine Verbesserung der Langzeitprognose. Seit vielen Jahren gehört die kontinuierliche Überwachung der Vitalparameter zum Standard auf einer neonatologischen Intensivstation. Durch das amplitudenintegrierte Elektroenzephalogramm (aEEG) bietet sich nun die Möglichkeit, Hirnfunktion und -entwicklung kontinuierlich zu überwachen, wodurch neurologische Informationen permanent verfügbar werden. Das aEEG erfüllt alle Voraussetzungen für den Einsatz bei Frühgeborenen auf der neonatologischen Intensivstation: a) unkomplizierte und rasche Anwendbarkeit, b) einfache Interpretation, c) keine Invasivität, d) Aussagekraft. Die Möglichkeiten des aEEG als zerebrales Monitoring in der Neonatologie erscheinen vielfältig, auch für Frühgeborene. Vorteile des aEEG im Vergleich zum konventionellen EEG bestehen insbesondere in der einfacheren Elektrodenapplikation, der Möglichkeit einer zeitlich längeren Ableitung und einer einfacheren Befundauswertung, die nach entsprechenden Schulungen auch nicht speziell im EEG ausgebildetem Personal möglich ist. Bei Frühgeborenen wurde das aEEG bisher vorwiegend im Rahmen von klinischen Studien eingesetzt. Es wurden Klassifikationen abhängig von der Reife und dem Alter der Patienten erstellt sowie die Möglichkeiten dieses Monitorings bei Schädigungen des Gehirns und zur Vorhersage der späteren Entwicklung von neurologischen Defiziten aufgezeigt. Für die Prognose und Therapieentscheidungen speziell bei den kleinsten Patienten könnte das aEEG zukünftig eine wertvolle Methode sein.

Abstract

Every year about 15 million babies are born preterm and 1 in 12 infants were born preterm in Austria in 2011. Despite tremendous efforts in obstetrical and neonatal care, preterm birth rates have further increased during the last 30 years. At present preterm birth is the leading cause of neonatal death and the second most common cause of death in children aged below 5 years. In general, complications following preterm birth arise from the biological immaturity of the organ systems. It must be born in mind that the first year of life is the most dynamic phase of postnatal brain development. In recent years imaging studies have contributed valuable information to the knowledge on brain maturation and developing brain injury. Amplitude-integrated electroencephalogram (aEEG) has been used to continuously monitor electrocortical activity in newborns for more than 30 years. In recent years aEEG has also been extensively studied in preterm neonates which is reflected by the growing number of studies being published. The advantages of aEEG over other diagnostic tools appear to be manifold; therefore, aEEG monitors are now increasingly being used in neonatal intensive care units. Continuous monitoring of electrocortical activity allows close evaluation of brain function, ongoing analysis of maturational processes and developmental plasticity. Additionally, in preterm infants brain activity recorded within the first days after birth serves as the closest estimate of intrauterine electrocortical function. The aEEG completes the panel on instruments to monitor vital organ function during intensive care and is also available for the smallest patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Allen MC (2008) Neurodevelopmental outcomes of preterm infants. Curr Opin Neurol 21:123–128

    Article  PubMed  Google Scholar 

  2. Blencowe H, Cousens S, Oestergaard MZ et al (2012) National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379:2162–2172

    Article  PubMed  Google Scholar 

  3. Chalak LF, Sikes NC, Mason MJ et al (2011) Low-voltage aEEG as predictor of intracranial hemorrhage in preterm infants. Pediatr Neurol 44:364–369

    Article  PubMed Central  PubMed  Google Scholar 

  4. Childs AM, Ramenghi LA, Cornette L et al (2001) Cerebral maturation in premature infants: quantitative assessment using MR imaging. AJNR Am J Neuroradiol 22:1577–1582

    CAS  PubMed  Google Scholar 

  5. Czaba-Hnizdo C, Olischar M, Rona Z et al (2014) Amplitude-integrated electroencephalography shows that doxapram influences the brain activity of preterm infants. Acta Paediatr. DOI 10.1111/apa.12681

  6. Griesmaier E, Enot DP, Bachmann M et al (2013) Systematic characterization of amplitude-integrated EEG signals for monitoring the preterm brain. Pediatr Res 73:226–235

    Article  PubMed  Google Scholar 

  7. Gunn JK, Beca J, Hunt RW et al (2012) Perioperative amplitude-integrated EEG and neurodevelopment in infants with congenital heart disease. Intensive Care Med 38:1539–1547

    Article  PubMed  Google Scholar 

  8. Hagmann CF, Robertson NJ, Azzopardi D (2006) Artifacts on electroencephalograms may influence the amplitude-integrated EEG classification: a qualitative analysis in neonatal encephalopathy. Pediatrics 118:2552–2554

    Article  PubMed  Google Scholar 

  9. Hellstrom-Westas L, Klette H, Thorngren-Jerneck K et al (2001) Early prediction of outcome with aEEG in preterm infants with large intraventricular hemorrhages. Neuropediatrics 32:319–324

    CAS  PubMed  Google Scholar 

  10. Hellstrom-Westas L, Rosen I (2005) Electroencephalography and brain damage in preterm infants. Early Hum Dev 81:255–261

    Article  PubMed  Google Scholar 

  11. Hellström-Westas L, Rosén I, Vries de, Greisen G (2006) Amplitude-integrated EEG classification and interpretation in preterm and term infants. Neoreviews 7:e76–e87

    Article  Google Scholar 

  12. Herbertz S, Pulzer F, Gebauer C et al (2006) The effect of maturation and sedation on amplitude-integrated electroencephalogram of the preterm neonate: results of a prospective study. Acta Paediatr 95:1394–1399

    Article  PubMed  Google Scholar 

  13. Kidokoro H, Kubota T, Hayashi N et al (2010) Absent cyclicity on aEEG within the first 24 h is associated with brain damage in preterm infants. Neuropediatrics 41:241–245

    Article  CAS  PubMed  Google Scholar 

  14. Klebermass K, Olischar M, Waldhoer T et al (2011) Amplitude-integrated EEG pattern predicts further outcome in preterm infants. Pediatr Res 70:102–108

    Article  PubMed  Google Scholar 

  15. Klimont J (2012) Frühgeburten in Österreich. Statistische Nachrichten 9:9

    Google Scholar 

  16. Maynard DE, Cohen RJ, Viniker DA (1979) Intrapartum fetal monitoring with the cerebral function monitor. Br J Obstet Gynaecol 86:941–947

    Article  CAS  PubMed  Google Scholar 

  17. Olischar M, Klebermass K, Kuhle S et al (2004) Reference values for amplitude-integrated electroencephalographic activity in preterm infants younger than 30 weeks‘ gestational age. Pediatrics 113:e61–e66

    Article  PubMed  Google Scholar 

  18. Olischar M, Klebermass K, Kuhle S et al (2004) Progressive posthemorrhagic hydrocephalus leads to changes of amplitude-integrated EEG activity in preterm infants. Child’s Nerv Syst 20:41–45

  19. Olischar M, Shany E, Aygun C et al (2012) Amplitude-integrated electroencephalography in newborns with inborn errors of metabolism. Neonatology 102:203–211

    Article  CAS  PubMed  Google Scholar 

  20. Olischar M, Shoemark H, Holton T et al (2011) The influence of music on aEEG activity in neurologically healthy newborns ≥ 32 weeks‘ gestational age. Acta Paediatr 100:670–675

    Article  PubMed  Google Scholar 

  21. Osredkar D, Toet MC, Van Rooij LG et al (2005) Sleep-wake cycling on amplitude-integrated electroencephalography in term newborns with hypoxic-ischemic encephalopathy. Pediatrics 115:327–332

    Article  PubMed  Google Scholar 

  22. Petrou S, Sach T, Davidson L (2001) The long-term costs of preterm birth and low birth weight: results of a systematic review. Child Care Health Dev 27:97–115

    Article  CAS  PubMed  Google Scholar 

  23. Shah DK, Mackay MT, Lavery S et al (2008) Accuracy of bedside electroencephalographic monitoring in comparison with simultaneous continuous conventional electroencephalography for seizure detection in term infants. Pediatrics 121:1146–1154

    Article  PubMed  Google Scholar 

  24. Sisman J, Campbell DE, Brion LP (2005) Amplitude-integrated EEG in preterm infants: maturation of background pattern and amplitude voltage with postmenstrual age and gestational age. J Perinatol 25:391–396

    Article  PubMed  Google Scholar 

  25. Supcun S, Kutz P, Pielemeier W et al (2010) Caffeine increases cerebral cortical activity in preterm infants. J Pediatr 156:490–491

    Article  CAS  PubMed  Google Scholar 

  26. Ter Horst HJ, Jongbloed-Pereboom M, Van Eykern LA et al (2011) Amplitude-integrated electroencephalographic activity is suppressed in preterm infants with high scores on illness severity. Early Hum Dev 87:385–390

    Article  Google Scholar 

  27. Viniker DA, Maynard DE, Scott DF (1984) Cerebral function monitor studies in neonates. Clin Electroencephalogr 15:185–192

    CAS  PubMed  Google Scholar 

  28. Volpe JJ (2005) Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics 116:221–225

    Article  PubMed  Google Scholar 

  29. Wikstrom S, Pupp IH, Rosen I et al (2012) Early single-channel aEEG/EEG predicts outcome in very preterm infants. Acta Paediatr 101:719–726

    Article  PubMed Central  PubMed  Google Scholar 

  30. Wusthoff CJ, Shellhaas RA, Clancy RR (2009) Limitations of single-channel EEG on the forehead for neonatal seizure detection. J Perinatol 29:237–242

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. E. Griesmaier gibt an, dass kein Interessenkonflikt besteht. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Griesmaier PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Griesmaier, E. Amplitudenintegriertes Elektroenzephalogramm. Monatsschr Kinderheilkd 162, 770–777 (2014). https://doi.org/10.1007/s00112-014-3106-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-014-3106-9

Schlüsselwörter

Keywords

Navigation