Skip to main content
Log in

Immuntherapie von Tumorerkrankungen mit Checkpoint-Inhibitoren

Nicht nur beim malignen Melanom

Immunotherapy of cancer with checkpoint inhibitors

Not only in malignant melanoma

  • Arzneimitteltherapie
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Checkpoint-Inhibitoren sind die neueste Waffe in der Onkologie. Ihre Entdeckung wurde möglich durch jahrzehntelange immunologische Grundlagenforschung. Sie basieren auf der mikroskopischen Erkenntnis, dass in sehr vielen Tumoren neben Tumorzellen auch Immunzellen gefunden werden können. Bei vielen Tumoren ist es prognostisch günstig, wenn sie lymphatische Zellen enthalten. Der erste Antikörper, der auf dieser Erkenntnis beruht, war Ipilimumab. Ipilimumab ist gegen das unter anderem auf T‑Zellen exprimierte Molekül CTLA-4 gerichtet. Studien zur Therapie des malignen Melanoms belegen eine signifikante Überlebensverlängerung gegenüber einem Placebopeptid. Die Therapie mit diesem Antikörper hat sich als recht toxisch herausgestellt. Gleichzeitig wurden Checkpoint-Inhibitoren entwickelt, die gegen das Molekül PD-1 gerichtet sind. PD-1 wird später als CTLA-4 auf aktivierten T‑Zellen exprimiert, sodass die Therapien mit dieser Antikörperklasse weniger toxisch sind. Obwohl Checkpoint-Inhibitoren generell nur einer Minderheit der behandelten Patienten nutzen, führen sie doch bei vielen Entitäten zu signifikanten Überlebensverlängerungen. Da diese Medikamente nun breit zugelassen werden, ist es wichtig, sich mit ihren Nebenwirkungen auseinanderzusetzen. Resistenzen werden einerseits durch eine niedrige Expression des natürlichen Liganden PD-L1 vorgegeben, andererseits auch durch einen Funktionsverlust interferonabhängiger Gene und der Interferonsignalkaskade in Tumorzellen. Neuartig sind auch andere Entwicklungen in der Tumorimmuntherapie wie der bispezifische Antikörper Blinatumomab sowie die gentechnisch modifizierten CAR-T-Zellen, die zunächst in der Therapie von B‑Zell-Leukämien eingesetzt werden. Zu diskutieren sind die enormen Kosten dieser neuen Therapieverfahren.

Abstract

The newest weapon in cancer therapy is checkpoint inhibition, which is the result of basic immunology research. The success of this therapy is based on the fact that upon light microscopy, many solid tumors harbor lymphocytic cells infiltrating the tumor (TILs), and in many solid tumors, the presence of these TILs are prognostic. Ipilimumab was the first monoclonal antibody developed against a target present on T cells after becoming activated, CTLA-4. In malignant melanoma, ipilimumab showed its beneficial effect as compared to a placebo peptide. However, the therapy with this antibody harbors significant toxicity. Meanwhile, other targets such as PD-1, also expressed on (late) activated T cells, were identified, and therapies with antibodies inhibiting PD-1/PD-L1 are less toxic. Although these antibodies show response only in a minority of patients, the benefit seems durable in some of these patients. In solid tumors such as melanoma or non-small cell lung cancer (NSCLC), treatment with PD-1 inhibitors has resulted in a significant prolongation of survival, even in first-line treatment. As these drugs have been approved in many indications, it is important to know the drugs and side effects. Resistance towards these drugs are caused by low expression of the natural ligand, PD-L1, in the tumor tissue, as well as acquired loss of signal transduction of interferon-related genes such as JAK1 or JAK2, respectively. Also new in cancer therapy are bispecific T cell engager monoclonal antibodies (BiTEs) such as blinatumomab, and autologous chimeric antigen receptor-modified T cells (CAR-Ts). The later have proven their efficacy mainly in hematological neoplasias such as precursor-B-ALL. The dramatic costs of all these new drugs will have an enormous impact on the health care systems in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Alexandrov LB, Ju YS, Haase K et al (2016) Mutational signatures associated with tobacco smoking in human cancer. Science 354:618–622

    Article  CAS  PubMed  Google Scholar 

  2. Ansell SM (2016) Nivolumab in the treatment of Hodgkin Lymphoma. Clin Cancer Res. doi:10.1158/1078-0432.CCR-16-1387

    Google Scholar 

  3. Ansell SM, Lesokhin AM, Borrello I et al (2015) PD-1 blockade with Nivolumab in relapsed or refractory Hodgkin’s Lymphoma. N Engl J Med 372:311–319

    Article  PubMed  Google Scholar 

  4. Bargou R, Leo E, Zugmaier G et al (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321:974–977

    Article  CAS  PubMed  Google Scholar 

  5. Barrett DM, Singh N, Porter DL et al (2014) Chimeric antigen receptor therapy for cancer. Annu Rev Med 65:333–347. doi:10.1146/annurev-med-060512-150254

    Article  CAS  PubMed  Google Scholar 

  6. Bassani-Sternberg M, Braunlein E, Klar R et al (2016) Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun 7:13404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berger AH, Brooks AN, Wu X et al (2016) High-throughput phenotyping of lung cancer somatic mutations. Cancer Cell 30:214–228

    Article  CAS  PubMed  Google Scholar 

  8. Borghaei H, Paz-Ares L, Horn L et al (2015) Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 373:1627–1639. doi:10.1056/NEJMoa1507643

    Article  CAS  PubMed  Google Scholar 

  9. Bouffet E, Larouche V, Campbell BB et al (2016) Immune checkpoint inhibition for Hypermutant Glioblastoma Multiforme resulting from Germline Biallelic mismatch repair deficiency. J Clin Oncol 34:2206–2211

    Article  PubMed  Google Scholar 

  10. Brahmer J, Reckamp KL, Baas P et al (2015) Nivolumab versus Docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 373:123–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Henau O, Rausch M, Winkler D et al (2016) Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature 539:443–447

    Article  PubMed  Google Scholar 

  12. de Maleissye MF, Nicolas G, Saiag P (2016) Pembrolizumab-induced demyelinating Polyradiculoneuropathy. N Engl J Med 375:296–297

    Article  PubMed  Google Scholar 

  13. Dietrich K, Theobald M (2015) Immunological tumor therapy. Internist (Berl) 56:907–916 (quiz 917)

    Article  CAS  Google Scholar 

  14. Gao J, Shi LZ, Zhao H et al (2016) Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell 167:397–404

    Article  CAS  PubMed  Google Scholar 

  15. Gettinger SN, Horn L, Gandhi L et al (2015) Overall survival and long-term safety of Nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol 33(18):2004–2012. doi:10.1200/JCO.2014.58.3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grupp SA, Kalos M, Barrett D et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368:1509–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hamid O, Robert C, Daud A et al (2013) Safety and tumor responses with Lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369:134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hugo W, Zaretsky Jesse M, Sun L et al (2016) Genomic and Transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165:35–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson DB, Balko JM, Compton ML et al (2016) Fulminant Myocarditis with combination immune checkpoint blockade. N Engl J Med 375:1749–1755

    Article  PubMed  Google Scholar 

  21. Juno Therapeutics (2016) Juno Therapeutics places JCAR015 Phase II ROCKET Trial on clinical hold. http://ir.junotherapeutics.com/phoenix.zhtml?c=253828&p=irol-newsArticle&ID=2225491

  22. Kreiter S, Vormehr M, van de Roemer N et al (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520:692–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Larkin J, Chiarion-Sileni V, Gonzalez R et al (2015) Combined Nivolumab and Ipilimumab or Monotherapy in untreated melanoma. N Engl J Med 373:23–34

    Article  PubMed  Google Scholar 

  24. Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Linnemann C, van Buuren MM, Bies L et al (2015) High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med 21:81–85

    Article  CAS  PubMed  Google Scholar 

  26. Maio M, Grob JJ, Aamdal S et al (2015) Five-year survival rates for treatment-naive patients with advanced melanoma who received Ipilimumab plus Dacarbazine in a phase III trial. J Clin Oncol 33:1191–1196

    Article  CAS  PubMed  Google Scholar 

  27. Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meyer M, Rubsamen D, Slany R et al (2009) Oncogenic RAS enables DNA damage- and p53-dependent differentiation of acute myeloid leukemia cells in response to chemotherapy. PLOS ONE 4:e7768

    Article  PubMed  PubMed Central  Google Scholar 

  29. Neubauer A, Maharry K, Mrozek K et al (2008) Patients with acute myeloid leukemia and RAS mutations benefit most from postremission high-dose cytarabine: A cancer and leukemia group B study. J Clin Oncol 26:4603–4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. O’Brien SG, Guilhot F, Larson RA et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348:994–1004

    Article  PubMed  Google Scholar 

  31. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Porter DL, Levine BL, Kalos M et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Posey AD Jr., Schwab RD, Boesteanu AC et al (2016) Engineered CAR T cells targeting the cancer-associated Tn-Glycoform of the membrane Mucin MUC1 control Adenocarcinoma. Immunity 44:1444–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rapoport AP, Stadtmauer EA, Binder-Scholl GK et al (2015) NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 21:914–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Reck M, Rodriguez-Abreu D, Robinson AG et al (2016) Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med 375:1823–1833

    Article  CAS  PubMed  Google Scholar 

  36. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Robert C, Long GV, Brady B et al (2014) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330

    Article  PubMed  Google Scholar 

  38. Robert C, Schachter J, Long GV et al (2015) Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532

    Article  CAS  PubMed  Google Scholar 

  39. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526

    Article  CAS  PubMed  Google Scholar 

  40. Roemer MG, Advani RH, Ligon AH et al (2016) PD-L1 and PD-L2 genetic alterations define classical Hodgkin Lymphoma and predict outcome. J Clin Oncol 34:2690–2697

    Article  CAS  PubMed  Google Scholar 

  41. Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74

    Article  CAS  PubMed  Google Scholar 

  42. Schwaederle M, Zhao M, Lee JJ et al (2016) Association of biomarker-based treatment strategies with response rates and progression-free survival in refractory malignant neoplasms: A meta-analysis. JAMA Oncol 2:1452–1459

    Article  PubMed  Google Scholar 

  43. Socinski M, Creelan B, Horn L et al (2016) Checkmate 026: A phase 3 trial of Nivolumab vs investigator’s choice (IC) of platinum-based doublet chemotherapy (PT-DC) as first-line therapy for stage IV/recurrent programmed death Ligand 1 (PD-L1) – positive NSCLC. ESMO 2016 Abst no LBA7_PR

    Google Scholar 

  44. Taylor C, Hershman D, Shah N et al (2007) Augmented HER-2 specific immunity during treatment with trastuzumab and chemotherapy. Clin Cancer Res 13:5133–5143

    Article  CAS  PubMed  Google Scholar 

  45. Tebas P, Stein D, Tang WW et al (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370:901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Topp MS, Gokbuget N, Stein AS et al (2014) Safety and activity of blinatumomab for adult patients with relapsed or refractory B‑precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 16(1):57–66

    Article  PubMed  Google Scholar 

  47. Topp MS, Gokbuget N, Zugmaier G et al (2014) Phase II trial of the anti-CD19 Bispecific T cell-engager Blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B‑precursor acute lymphoblastic leukemia. J Clin Oncol 32:4134–4140

    Article  CAS  PubMed  Google Scholar 

  48. Tran E, Ahmadzadeh M, Lu YC et al (2015) Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350:1387–1390

    Article  CAS  PubMed  Google Scholar 

  49. Van Allen EM, Miao D, Schilling B et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–211

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus Ipilimumab in advanced melanoma. N Engl J Med 369:122–131

    Article  CAS  PubMed  Google Scholar 

  51. Zaretsky JM, Garcia-Diaz A, Shin DS et al (2016) Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 375:819–829

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Neubauer.

Ethics declarations

Interessenkonflikt

A. Neubauer gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Wehling, Mannheim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neubauer, A. Immuntherapie von Tumorerkrankungen mit Checkpoint-Inhibitoren. Internist 58, 409–423 (2017). https://doi.org/10.1007/s00108-017-0208-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-017-0208-1

Schlüsselwörter

Keywords

Navigation