Skip to main content
Log in

Immunität gegen Mycobacterium tuberculosis

Immune response to Mycobacterium tuberculosis

  • Schwerpunkt: Tuberkulose
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Auf die Infektion mit Mycobacterium tuberculosis (MTB) folgt eine komplexe Immunantwort, die durch ein distinktes Zusammenspiel von angeborenen und adaptiven Komponenten und Mechanismen des Immunsystems charakterisiert ist. Warum die Immunantwort auf MTB nicht zur anhaltenden Eliminierung der Erreger führt, sondern bestenfalls eine stabile Kontrolle der Infektion im Stadium der latenten Infektion erreicht, ist auch über 100 Jahre nach der Entdeckung von MTB durch Robert Koch noch nicht abschließend geklärt. Diese Übersichtsarbeit stellt einen Paradigmenwechsel vor, der voraussetzt, dass sich MTB in der latenten Phase der Infektion keineswegs in einem Ruhezustand befindet und dass die latente Tuberkulose nicht lediglich einen Zustand der bakteriellen Stase beschreibt, sondern ein dynamisches und immunologisches Äquilibrium darstellt, dessen detailliertes Verständnis für die Entwicklung neuer wirksamer Antibiotika und Vakzinekandidaten unverzichtbar ist.

Abstract

Infections with Mycobacterium tuberculosis (MTB) induce complex immune responses involving an orchestrated interplay of innate and adaptive immune mechanisms. Why the immune system fails to eradicate the pathogen and at best achieves control of infection in the latent stage, still remains an unsolved mystery even more than 100 years after the discovery of MTB by Robert Koch. This article provides an overview of the current state of the art in the constantly evolving field of tuberculosis (TB) immunology. This review focuses on a change of paradigm proposing that in the latent stage MTB is anything but dormant and that latent TB is not merely a state of bacterial stasis but a state of dynamic bacterial and immunological equilibrium. The understanding of these dynamics is crucial for the development of new drugs against MTB as well as vaccines that aim to provide effective protection against the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Bafica A, Scanga CA, Feng CG et al (2005) TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J Exp Med 202:1715–1724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Banaiee N, Kincaid EZ, Buchwald U et al (2006) Potent inhibition of macrophage responses to IFN-gamma by live virulent Mycobacterium tuberculosis is independent of mature mycobacterial lipoproteins but dependent on TLR2. J Immunol 176:3019–3027

    Article  CAS  PubMed  Google Scholar 

  3. Barber DL, Mayer-Barber KD, Antonelli LR et al (2010) Th1-driven immune reconstitution disease in Mycobacterium avium-infected mice. Blood 116:3485–3493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Behar SM, Martin CJ, Booty MG et al (2011) Apoptosis is an innate defense function of macrophages against Mycobacterium tuberculosis. Mucosal Immunol 4:279–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Black GF, Thiel BA, Ota MO et al (2009) Immunogenicity of novel DosR regulon-encoded candidate antigens of Mycobacterium tuberculosis in three high-burden populations in Africa. Clin Vaccine Immunol 16:1203–1212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Blomgran R, Desvignes L, Briken V et al (2012) Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD4 T cells. Cell Host Microbe 11:81–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Blomgran R, Ernst JD (2011) Lung neutrophils facilitate activation of naive antigen-specific CD4+ T cells during Mycobacterium tuberculosis infection. J Immunol 186:7110–7119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bold TD, Banaei N, Wolf AJ et al (2011) Suboptimal activation of antigen-specific CD4+ effector cells enables persistence of M. tuberculosis in vivo. PLOS Pathog 7:e1002063

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890

    Article  CAS  PubMed  Google Scholar 

  10. Brooks MN, Rajaram MV, Azad AK et al (2011) NOD2 controls the nature of the inflammatory response and subsequent fate of Mycobacterium tuberculosis and M. bovis BCG in human macrophages. Cell Microbiol 13:402–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chao MC, Rubin EJ (2010) Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu Rev Microbiol 64:293–311

    Article  CAS  PubMed  Google Scholar 

  12. Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cooper AM, Adams LB, Dalton DK et al (2002) IFN-gamma and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol 10:221–226

    Article  CAS  PubMed  Google Scholar 

  14. Cooper AM, Magram J, Ferrante J et al (1997) Interleukin 12 (IL-12) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med 186:39–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Cooper AM, Mayer-Barber KD, Sher A (2011) Role of innate cytokines in mycobacterial infection. Mucosal Immunol 4:252–260

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Court N, Vasseur V, Vacher R et al (2010) Partial redundancy of the pattern recognition receptors, scavenger receptors, and C-type lectins for the long-term control of Mycobacterium tuberculosis infection. J Immunol 184:7057–7070

    Article  CAS  PubMed  Google Scholar 

  17. Davis JM, Ramakrishnan L (2009) The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 136:37–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. De Libero G, Mori L (2005) Recognition of lipid antigens by T cells. Nat Rev Immunol 5:485–496

    Article  PubMed  Google Scholar 

  19. Divangahi M, Mostowy S, Coulombe F et al (2008) NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol 181:7157–7165

    Article  CAS  PubMed  Google Scholar 

  20. Ernst JD (2012) The immunological life cycle of tuberculosis. Nat Rev Immunol 12:581–591

    Article  CAS  PubMed  Google Scholar 

  21. Feng CG, Jankovic D, Kullberg M et al (2005) Maintenance of pulmonary Th1 effector function in chronic tuberculosis requires persistent IL-12 production. J Immunol 174:4185–4192

    Article  CAS  PubMed  Google Scholar 

  22. Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129

    Article  CAS  PubMed  Google Scholar 

  23. Ford CB, Lin PL, Chase MR et al (2011) Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nat Genet 43:482–486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gallegos AM, Pamer EG, Glickman MS (2008) Delayed protection by ESAT-6-specific effector CD4+ T cells after airborne M. tuberculosis infection. J Exp Med 205:2359–2368

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gill WP, Harik NS, Whiddon MR et al (2009) A replication clock for Mycobacterium tuberculosis. Nat Med 15:211–214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Govender L, Abel B, Hughes EJ et al (2010) Higher human CD4 T cell response to novel Mycobacterium tuberculosis latency associated antigens Rv2660 and Rv2659 in latent infection compared with tuberculosis disease. Vaccine 29:51–57

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Harris J, Keane J (2010) How tumour necrosis factor blockers interfere with tuberculosis immunity. Clin Exp Immunol 161:1–9

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Holscher C, Reiling N, Schaible UE et al (2008) Containment of aerogenic Mycobacterium tuberculosis infection in mice does not require MyD88 adaptor function for TLR2, -4 and -9. Eur J Immunol 38:680–694

    Article  PubMed  Google Scholar 

  29. Ishikawa E, Ishikawa T, Morita YS et al (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Jick SS, Lieberman ES, Rahman MU et al (2006) Glucocorticoid use, other associated factors, and the risk of tuberculosis. Arthritis Rheum 55:19–26

    Article  PubMed  Google Scholar 

  31. Kaneko H, Yamada H, Mizuno S et al (1999) Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice. Lab Invest 79:379–386

    CAS  PubMed  Google Scholar 

  32. Kasmar AG, van Rhijn I, Cheng TY et al (2011) CD1b tetramers bind alphabeta T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. J Exp Med 208:1741–1747

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Keane J, Gershon S, Wise RP et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 345:1098–1104

    Article  CAS  PubMed  Google Scholar 

  34. Khader SA, Partida-Sanchez S, Bell G et al (2006) Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J Exp Med 203:1805–1815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kumar A, Deshane JS, Crossman DK et al (2008) Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J Biol Chem 283:18032–18039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kwan CK, Ernst JD (2011) HIV and tuberculosis: a deadly human syndemic. Clin Microbiol Rev 24:351–376

    Article  PubMed Central  PubMed  Google Scholar 

  37. Lalvani A, Brookes R, Wilkinson RJ et al (1998) Human cytolytic and interferon gamma-secreting CD8+ T lymphocytes specific for Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 95:270–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lillebaek T, Dirksen A, Vynnycky E et al (2003) Stability of DNA patterns and evidence of Mycobacterium tuberculosis reactivation occurring decades after the initial infection. J Infect Dis 188:1032–1039

    Article  CAS  PubMed  Google Scholar 

  39. Lin PL, Myers A, Smith L et al (2010) Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model. Arthritis Rheum 62:340–350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Marakalala MJ, Guler R, Matika L et al (2011) The Syk/CARD9-coupled receptor Dectin-1 is not required for host resistance to Mycobacterium tuberculosis in mice. Microbes Infect 13:198–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Mayer-Barber KD, Andrade BB, Barber DL et al (2011) Innate and adaptive interferons suppress IL-1alpha and IL-1beta production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity 35:1023–1034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. McNab FW, Berry MP, Graham CM et al (2011) Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol 41:1941–1947

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Mishra BB, Moura-Alves P, Sonawane A et al (2010) Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol 12:1046–1063

    Article  CAS  PubMed  Google Scholar 

  44. Moody DB, Young DC, Cheng TY et al (2004) T cell activation by lipopeptide antigens. Science 303:527–531

    Article  CAS  PubMed  Google Scholar 

  45. Newton SM, Smith RJ, Wilkinson KA et al (2006) A deletion defining a common Asian lineage of Mycobacterium tuberculosis associates with immune subversion. Proc Natl Acad Sci U S A 103:15594–15598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. North RJ, Jung YJ (2004) Immunity to tuberculosis. Annu Rev Immunol 22:599–623

    Article  CAS  PubMed  Google Scholar 

  47. O’Garra A, Redford PS, McNab FW et al (2013) The immune response in tuberculosis. Annu Rev Immunol 31:475–527

    Article  PubMed  Google Scholar 

  48. Orme IM, Andersen P, Boom WH (1993) T cell response to Mycobacterium tuberculosis. J Infect Dis 167:1481–1497

    Article  CAS  PubMed  Google Scholar 

  49. Redford PS, Boonstra A, Read S et al (2010) Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung. Eur J Immunol 40:2200–2210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Redford PS, Murray PJ, O’Garra A (2011) The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol 4:261–270

    Article  CAS  PubMed  Google Scholar 

  51. Rogerson BJ, Jung YJ, LaCourse R et al (2006) Expression levels of Mycobacterium tuberculosis antigen-encoding genes versus production levels of antigen-specific T cells during stationary level lung infection in mice. Immunology 118:195–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Rothfuchs AG, Bafica A, Feng CG et al (2007) Dectin-1 interaction with Mycobacterium tuberculosis leads to enhanced IL-12p40 production by splenic dendritic cells. J Immunol 179:3463–3471

    Article  CAS  PubMed  Google Scholar 

  53. Russell-Goldman E, Xu J, Wang X et al (2008) A Mycobacterium tuberculosis Rpf double-knockout strain exhibits profound defects in reactivation from chronic tuberculosis and innate immunity phenotypes. Infect Immun 76:4269–4281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170–181

    Article  CAS  PubMed  Google Scholar 

  55. Schoenen H, Bodendorfer B, Hitchens K et al (2010) Cutting edge: Mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenate. J Immunol 184:2756–2760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Seung KJ, Bai GH, Kim SJ et al (2003) The treatment of tuberculosis in South Korea. Int J Tuberc Lung Dis 7:912–919

    CAS  PubMed  Google Scholar 

  57. Shafiani S, Tucker-Heard G, Kariyone A et al (2010) Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. J Exp Med 207:1409–1420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Shi L, North R, Gennaro ML (2004) Effect of growth state on transcription levels of genes encoding major secreted antigens of Mycobacterium tuberculosis in the mouse lung. Infect Immun 72:2420–2424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Tailleux L, Schwartz O, Herrmann JL et al (2003) DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J Exp Med 197:121–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Tanne A, Ma B, Boudou F et al (2009) A murine DC-SIGN homologue contributes to early host defense against Mycobacterium tuberculosis. J Exp Med 206:2205–2220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Tsao TC, Huang CC, Chiou WK et al (2002) Levels of interferon-gamma and interleukin-2 receptor-alpha for bronchoalveolar lavage fluid and serum were correlated with clinical grade and treatment of pulmonary tuberculosis. Int J Tuberc Lung Dis 6:720–727

    CAS  PubMed  Google Scholar 

  62. Tufariello JM, Mi K, Xu J et al (2006) Deletion of the Mycobacterium tuberculosis resuscitation-promoting factor Rv1009 gene results in delayed reactivation from chronic tuberculosis. Infect Immun 74:2985–2995

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Urdahl KB, Shafiani S, Ernst JD (2011) Initiation and regulation of T-cell responses in tuberculosis. Mucosal Immunol 4:288–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Vankayalapati R, Wizel B, Weis SE et al (2003) Serum cytokine concentrations do not parallel Mycobacterium tuberculosis-induced cytokine production in patients with tuberculosis. Clin Infect Dis 36:24–28

    Article  CAS  PubMed  Google Scholar 

  65. Vassalli P (1992) The pathophysiology of tumor necrosis factors. Annu Rev Immunol 10:411–452

    Article  CAS  PubMed  Google Scholar 

  66. Verbon A, Juffermans N, Van Deventer SJ et al (1999) Serum concentrations of cytokines in patients with active tuberculosis (TB) and after treatment. Clin Exp Immunol 115:110–113

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Voskuil MI, Schnappinger D, Visconti KC et al (2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hartmann.

Ethics declarations

Interessenkonflikt

A. Nowag und P. Hartmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

B. Salzberger, Regensburg

T. Welte, Hannover

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nowag, A., Hartmann, P. Immunität gegen Mycobacterium tuberculosis . Internist 57, 107–116 (2016). https://doi.org/10.1007/s00108-015-0016-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-015-0016-4

Schlüsselwörter

Keywords

Navigation