Skip to main content
Log in

Biologische Therapien in der Otologie

Biological therapies in otology. German version

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Mehrere Millionen Menschen weltweit leiden an Hörverlust. Derzeitige Therapien für Patienten mit hochgradigem Hörverlust beschränken sich auf die Versorgung mit einem Cochleaimplantat. Sofern der Hörnerv intakt ist, profitieren die behandelten Personen enorm, und ein Sprachverstehen ist wieder möglich. Allerdings gibt es nach wie vor Einschränkungen, die aus technologischer Sicht nicht angegangen werden. Neuartige Ansätze, basierend auf Zelltransplantation und Gentherapie, entwickeln sich rapide, zumindest im experimentellen Sektor. Klinische Translationsansätze indes sind, verglichen mit der Fülle an Grundlagenforschung auf diesem Gebiet, eher rudimentär. Die vorliegende Übersichtsarbeit konzentriert sich daher zum einen auf translationsfähige Ansätze und die zu überkommenden Hindernisse bei der Translation, zum anderen auf erste klinische Ansätze biologischer Therapien bei hochgradiger Schwerhörigkeit, insbesondere in Verbindung mit einer Cochleaimplantation.

Abstract

Millions of people worldwide suffer from hearing loss. Current treatment for patients with severe to profound hearing loss consists of cochlear implants. Providing the cochlear nerve is intact, patients generally benefit enormously from this intervention, frequently achieving significant improvements in speech comprehension. There are, however, some cases where current technology does not provide patients with adequate benefit. New therapeutic concepts based on cell transplantation and gene therapy are developing rapidly, at least in the research sector. Compared to the wealth of basic research available in this area, translation of these new experimental approaches into clinical application is presently at a very early stage. The current review focuses on translatable treatment concepts and discusses the barriers that need to be overcome in order to translate basic scientific research into clinical reality. Furthermore, the first examples of clinical application of biological therapies in severe hearing loss are presented, particularly in connection with cochlear implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Hilgert N, Smith RJH, Van Camp G (2009) Forty-six genes causing nonsyndromic hearing impairment: which ones should be analyzed in DNA diagnostics? Mutat Res Rev Mutat Res 681:189–196. doi:10.1016/j.mrrev.2008.08.002

    Article  CAS  Google Scholar 

  2. Lawner BE, Harding GW, Bohne BA (1997) Time course of nerve-fiber regeneration in the noise-damaged mammalian cochlea. Int J Dev Neurosci 15:601–617

    Article  CAS  PubMed  Google Scholar 

  3. Brigande JV, Heller S (2009) Quo vadis, hair cell regeneration? Nat Neurosci 12:679–685. doi:10.1038/nn.2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perez P, Bao J (2011) Why do hair cells and spiral ganglion neurons in the cochlea die during aging? Aging Dis 2:231–241

    PubMed  PubMed Central  Google Scholar 

  5. Atas B, Altunhan H, Eryilmaz MA, Atas E (2011) Frequency of congenital hearing loss in 43,503 healthy newborn infants in Konya, Turkey. J Pak Med Assoc 61:727

    PubMed  Google Scholar 

  6. Mahdieh N, Rabbani B (2009) Statistical study of 35delG mutation of GJB2 gene: a meta-analysis of carrier frequency. Int J Audiol 48:363–370. doi:10.1080/14992020802607449

    Article  PubMed  Google Scholar 

  7. Toriello HV, Smith SD (2013) Hereditary hearing loss and its syndromes, 3. Aufl. Oxford University Press, Oxford

    Google Scholar 

  8. Kokotas H, Petersen MB, Willems PJ (2007) Mitochondrial deafness. Clin Genet 71:379–391. doi:10.1111/j.1399-0004.2007.00800.x

    Article  CAS  PubMed  Google Scholar 

  9. Baker K, Staecker H (2012) Low dose oxidative stress induces mitochondrial damage in hair cells. Anat Rec (Hoboken) 295:1868–1876. doi:10.1002/ar.22594

    Article  CAS  Google Scholar 

  10. Chen H, Tang J (2014) The role of mitochondria in age-related hearing loss. Biogerontology 15:13–19. doi:10.1007/s10522-013-9475-y

    Article  CAS  PubMed  Google Scholar 

  11. Han C, Someya S (2013) Mouse models of age-related mitochondrial neurosensory hearing loss. Mol Cell Neurosci 55:95–100. doi:10.1016/j.surg.2006.10.010.Use

    Article  CAS  PubMed  Google Scholar 

  12. Gates G, Mills J (2005) Presbycusis. Lancet 366:1111–1120

    Article  PubMed  Google Scholar 

  13. Alvarado JC, Fuentes-Santamaria V, Melgar-Rojas P, Valero ML, Gabaldón-Ull MC, Miller JM et al (2015) Synergistic effects of free radical scavengers and cochlear vasodilators: a new otoprotective strategy for age-related hearing loss. Front Aging Neurosci 7:1–7. doi:10.3389/fnagi.2015.00086

    Article  CAS  Google Scholar 

  14. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after „temporary“ noise-induced hearing loss. J Neurosci 29:14077–14085. doi:10.1523/JNEUROSCI.2845-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sergeyenko Y, Lall K, Liberman MC, Kujawa SG (2013) Age-related cochlear synaptopathy : an early-onset contributor to auditory functional decline. J Neurosci 33:13686–13694. doi:10.1523/JNEUROSCI.1783-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liberman LD, Liberman C (2015) Dynamics of cochlear synaptopathy after acoustic overexposure. J Assoc Res Otolaryngol 16:205–219. doi:10.1007/s10162-015-0510-3

    Article  PubMed  PubMed Central  Google Scholar 

  17. Moser T, Predoehl F, Starr A (2013) Review of hair cell synapse defects in sensorineural hearing impairment. Otol Neurotol 34:995. doi:10.1097/mao.0b013e3182814d4a

    Article  PubMed  Google Scholar 

  18. Zeitz C, Kloeckener-Gruissem B, Forster U, Kohl S, Magyar I, Wissinger B et al (2006) Mutations in CABP4, the gene encoding the Ca2+-binding protein 4, cause autosomal recessive night blindness. Am J Hum Genet 79:657–667. doi:10.1086/508067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schrauwen I, Helfmann S, Inagaki A, Predoehl F, Tabatabaiefar MA, Picher MM et al (2012) A mutation in CABP2, expressed in cochlear hair cells, causes autosomal-recessive hearing impairment. Am J Hum Genet 91:636–645. doi:10.1016/j.ajhg.2012.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilson BS, Dorman MF (2008) Cochlear implants: a remarkable past and a brilliant future. Hear Res 242:3–21. doi:10.1016/j.heares.2008.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  21. O’Leary SJ, Richardson RR, McDermott HJ (2009) Principles of design and biological approaches for improving the selectivity of cochlear implant electrodes. J Neural Eng 6:55002. doi:10.1088/1741-2560/6/5/055002

    Article  Google Scholar 

  22. McDermott HJ (2004) Music perception with cochlear implants: a review. Trends Amplif 8:49–82. doi:10.1177/108471380400800203

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gantz BJ, Woodworth GG, Knutson JF, Abbas PJ, Tyler RS (1993) Multivariate predictors of success with cochlear implants. Adv Otorhinolaryngol 48:153–167

    CAS  PubMed  Google Scholar 

  24. Glueckert R, Pfaller K, Kinnefors A, Rask-Andersen H, Schrott-Fischer A (2005) The human spiral ganglion: new insights into ultrastructure, survival rate and implications for cochlear implants. Audiol Neurootol 10:258–273. doi:10.1159/000086000

    Article  PubMed  Google Scholar 

  25. Spoendlin H (1984) Factors inducing retrograde degeneration of the cochlear nerve. Ann Otol Rhinol Laryngol Suppl 112:76–82

    Article  CAS  PubMed  Google Scholar 

  26. Maria SPL, Domville-Lewis C, Sucher CM, Chester-Browne R, Atlas MD (2013) Hearing preservation surgery for cochlear implantation – hearing and quality of life after 2 years. Otol Neurotol 34:526–531. doi:10.1097/MAO.0b013e318281e0c9

    Article  Google Scholar 

  27. Lenarz T, James C, Cuda D, Fitzgerald O’Connor, Frachet AB, Frijns J, Klenzner T et al (2013) European multi-centre study of the nucleus hybrid L24 cochlear implant. Int J Audiol 52:838–848

    Article  PubMed  Google Scholar 

  28. Scarpidis U, Madnani D, Shoemaker C, Fletcher CH, Kojima K, Eshraghi A et al (2003) Arrest of apoptosis in auditory neurons: implications for sensorineural preservation in cochlear implantation. Otol Neurotol 24:409–417

    Article  PubMed  Google Scholar 

  29. Alleva R, Manzelle N, Gaetani S, Ciarapica V, Bracci M, Caboni MF et al (2016) Organic honey supplemenation reverses pesticide-induced genotoxicity by modulating DNA damage response. Mol Nutr Food Res 60:2243. doi:10.1002/mnfr.201600005

    Article  CAS  PubMed  Google Scholar 

  30. Lee M‑S, Lee S, Doo M, Kim Y (2016) Green Tea (−)-Epigallotocatechin-3-Gallate induces PGC-1α gene expression in HepG2 cells and 3T3-L1 adipocytes. Prev Nutr Food Sci 21:162–167

    Google Scholar 

  31. Svensson K, Schnyder S, Albert V, Cardel B, Quagliata L, Terracciano LM et al (2015) Resveratrol and SRT1720 elicit differential effects in metabolic organs and modulate systemic parameters independently of skeletal muscle peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α). J Biol Chem 290:16059–16076. doi:10.1074/jbc.M114.590653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seidman MD, Tang W, Bai VU, Ahmad N, Jiang H, Media J et al (2013) Resveratrol decreases noise-induced cyclooxygenase-2 expression in the rat cochlea. Otolaryngol Neck Surg 148:827–833. doi:10.1177/0194599813475777

    Article  Google Scholar 

  33. Seidman M, Babu S, Tang W, Naem E, Quirk WS (2003) Effects of resveratrol on acoustic trauma. Otolaryngol Head Neck Surg 129:463–470. doi:10.1016/S0194-5998(03)01586-9

    Article  PubMed  Google Scholar 

  34. Shibata SB, Budenz CL, Bowling SA, Pfingst BE, Raphael Y (2011) Nerve maintenance and regeneration in the damaged cochlea. Hear Res 281(1-2):56. doi:10.1016/j.heares.2011.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wise AK, Gillespie LN (2012) Drug delivery to the inner ear. J Neural Eng 9:065002. doi:10.1016/j.biotechadv.2011.08.021.Secreted

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yamamoto N, Nakagawa T, Ito J, Karl G, Nell H (2014) Application of insulin-like growth factor-1 in the treatment of inner ear disorders. Front Pharmacol. doi:10.3389/fphar.2014.00208

    PubMed  PubMed Central  Google Scholar 

  37. Iwai K, Nakagawa T, Endo T, Matsuoka Y, Kita T, Kim T‑S et al (2006) Cochlear protection by local insulin-like growth factor-1 application using biodegradable hydrogel. Laryngoscope 116:529–533. doi:10.1097/01.mlg.0000200791.77819.eb

    Article  CAS  PubMed  Google Scholar 

  38. Chauvin K, Bratton C, Parkins C (1999) Healing large tympanic membrane perforations using hyaluronic acid, basic fibroblast growth factor, and epidermal growth factor. Otolaryngol Head Neck Surg 121:43–47

    Article  CAS  PubMed  Google Scholar 

  39. Seonwoo H, Kim SW, Kim J, Chunjie T, Lim KT, Kim YJ et al (2013) Regeneration of chronic tympanic membrane perforation using an EGF-releasing chitosan patch. Tissue Eng Part A 19:2097–2107. doi:10.1089/ten.TEA.2012.0617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jian-Yang, Zi-Han-Lou, Yahui-Fu, Zheng-Cai-Lou (2016) A retrospective study of EGF and ofloxacin drops in the healing of human large traumatic eardrum perforation. Am J Otolaryngol. doi:10.1016/j.amjoto.2016.03.005

    Google Scholar 

  41. Lou Z, Yang J, Tang Y, Fu Y (2016) Topical application of epidermal growth factor with no scaffold material on the healing of human traumatic tympanic membrane perforations. Clin Otolaryngol. doi:10.1111/coa.12627

    Google Scholar 

  42. Zhengcai-Lou, Zihan-Lou, Yongmei-Tang (2016) Comparative study on the effects of EGF and bFGF on the healing of human large traumatic perforations of the tympanic membrane. Laryngoscope 126:E23–E28. doi:10.1002/lary.25715

    Article  CAS  PubMed  Google Scholar 

  43. Lou Z, Wang Y (2015) Evaluation of the optimum time for direct application of fibroblast growth factor to human traumatic tympanic membrane perforations. Growth Factors 33:65–70. doi:10.3109/08977194.2014.980905

    Article  CAS  PubMed  Google Scholar 

  44. Lou Z, Wang Y, Yu G (2014) Effects of basic fibroblast growth factor dose on traumatic tympanic membrane perforation. Growth Factors 32:150–154. doi:10.3109/08977194.2014.952411

    Article  CAS  PubMed  Google Scholar 

  45. Coleman J, Littlesunday C, Jackson R, Meyer T (2007) AM-111 protects against permanent hearing loss from impulse noise trauma. Hear Res 226:70–78

    Article  CAS  PubMed  Google Scholar 

  46. Barkdull GC, Hondarrague Y, Meyer T, Harris JP, Keithley EM (2007) AM-111 reduces hearing loss in a guinea pig model of acute labyrinthitis. Laryngoscope 117:2174–2182. doi:10.1016/S1041-892X(09)79440-5

    Article  CAS  PubMed  Google Scholar 

  47. Eshraghi AA, He J, Mou CH, Polak M, Zine A, Bonny C et al (2006) D‑JNKI-1 treatment prevents the progression of hearing loss in a model of cochlear implantation trauma. Otol Neurotol 27:504–511

    PubMed  Google Scholar 

  48. Suckfuell M, Lisowska G, Domka W, Kabacinska A, Morawski K, Bodlaj R et al (2014) Efficacy and safety of AM-111 in the treatment of acute sensorineural hearing loss: a double-blind, randomized, placebo-controlled phase II study. Otol Neurotol 35:1317–1326

    Article  PubMed  Google Scholar 

  49. Wang J (2004) Caspase inhibitors, but not c‑Jun NH2-terminal kinase inhibitor treatment, prevent cisplatin-induced hearing loss. Cancer Res 64:9217–9224. doi:10.1158/0008-5472.CAN-04-1581

    Article  CAS  PubMed  Google Scholar 

  50. Staecker H, Lefebvre P (2002) Autoimmune sensorineural hearing loss improved by tumor necrosis factor-alpha blockade: a case report. Acta Otolaryngol 122:684–687

    Article  CAS  PubMed  Google Scholar 

  51. Van Wijk F, Staecker H, Keithley E, Lefebvre PP (2006) Local perfusion of the tumor necrosis factor α blocker infliximab to the inner ear improves autoimmune neurosensory hearing loss. Audiol Neurotol 11:357–365. doi:10.1159/000095897

    Article  CAS  Google Scholar 

  52. Choi BY, Song J‑J, Chang SO, Kim SU, Oh SH (2012) Intravenous administration of human mesenchymal stem cells after noise- or drug-induced hearing loss in rats. Acta Otolaryngol 132(Suppl):S94–S102. doi:10.3109/00016489.2012.660731

    Article  CAS  PubMed  Google Scholar 

  53. Tan BTG, Lee MMG, Ruan R (2008) Bone-marrow-derived cells that home to acoustic deafened cochlea preserved their hematopoietic identity. J Comp Neurol 509:167–179. doi:10.1002/cne.21729

    Article  PubMed  Google Scholar 

  54. Kamiya K (2015) Inner ear cell therapy targeting hereditary deafness by activation of stem cell homing factors. Front Pharmacol 6:2–4. doi:10.3389/fphar.2015.00002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Staecker H, Praetorius M, Brough DE (2011) Development of gene therapy for inner ear disease: using bilateral vestibular hypofunction as a vehicle for translational research. Hear Res 276:44. doi:10.1016/j.heares.2011.01.006

    Article  PubMed  PubMed Central  Google Scholar 

  56. Staecker H, Praetorius M, Baker K, Brough DE (2007) Vestibular hair cell regeneration and restoration of balance function induced by math1 gene transfer. Otol Neurotol 28:223–231. doi:10.1097/MAO.0b013e31802b3225

    Article  PubMed  Google Scholar 

  57. Izumikawa M, Minoda R, Kawamoto K, Abrashkin KA, Swiderski DL, Dolan DF et al (2005) Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals. Nat Med 11:271–276. doi:10.1038/nm1193

    Article  CAS  PubMed  Google Scholar 

  58. Askew C, Rochat C, Pan B, Asai Y, Ahmed H, Child E et al (2015) Tmc gene therapy restores auditory function in deaf mice. Sci Transl Med 7:1–12. doi:10.1126/scitranslmed.aab1996

    Article  CAS  Google Scholar 

  59. Akil O, Seal R, Burke K, Wang C, Alemi A, During M et al (2012) Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 75:283–293. doi:10.1016/j.micinf.2011.07.011.Innate

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wan G, Gómez-Casati ME, Gigliello AR, Liberman MC, Corfas G (2014) Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. Elife 3:1–18. doi:10.7554/eLife.03564

    Article  CAS  Google Scholar 

  61. Tona Y, Hamaguchi K, Ishikawa M, Miyoshi T, Yamamoto N, Yamahara K et al (2014) Therapeutic potential of a gamma-secretase inhibitor for hearing restoration in a guinea pig model with noise-induced. Hear Loss 15:1–8. doi:10.1186/1471-2202-15-66

    Google Scholar 

  62. Mizutari K, Fujioka M, Hosoya M, Bramhall N (2013) Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 77:58–69. doi:10.1016/j.neuron.2012.10.032.Notch

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pirvola U, Hallböök F, Xing-Qun L, Virkkala J, Saarma M, Ylikoski J (1997) Expression of neurotrophins and Trk receptors in the developing, adult, and regenerating avian cochlea. J Neurobiol 33:1019–1033

    Article  CAS  PubMed  Google Scholar 

  64. Pirvola U, Ylikoski J, Palgi J, Lehtonen E, Arumäe U, Saarma M (1992) Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proc Natl Acad Sci U S A 89:9915–9919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Flores-Otero J, Davis RL (2011) Synaptic proteins are tonotopically graded in postnatal adult type I and type II spiral ganglion cells. J Comp Neurol 519:1455–1475. doi:10.1002/cne.22576.Synaptic

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bailey EM, Green SH (2014) Postnatal expression of neurotrophic factors accessible to spiral ganglion neurons in the auditory system of adult hearing and deafened rats. J Neurosci 34:13110–13126. doi:10.1523/JNEUROSCI.1014-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mellado Lagarde MM, Cox BC, Fang J, Taylor R, Forge A, Zuo J (2013) Selective ablation of pillar and deiters’ cells severely affects cochlear postnatal development and hearing in mice. J Neurosci 33:1564–1576. doi:10.1523/JNEUROSCI.3088-12.2013

    Article  PubMed  CAS  Google Scholar 

  68. May LA, Kramarenko II, Brandon CS, Voelkel-Johnson C, Roy S, Truong K et al (2013) Inner ear supporting cells protect hair cells by secreting HSP70. J Clin Invest 123:3577–3587. doi:10.1172/JCI68480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Groves AK (2013) The challenge of hair cell regeneration. Exp Biol Med 235:434–446. doi:10.1258/ebm.2009.009281.The

    Article  CAS  Google Scholar 

  70. Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M et al (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8:495–505. doi:S1528365802804955

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K et al (2009) Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40. doi:10.1161/STROKEAHA.109.564872

    PubMed  Google Scholar 

  72. Jia L, Chopp M, Zhang L, Lu M, Zhang Z (2010) Erythropoietin in combination of tissue plasminogen activator exacerbates brain hemorrhage when treatment is initiated 6 hours after stroke. Stroke 41:2071–2076. doi:10.1161/STROKEAHA.110.586198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhu C, Kang W, Xu F, Cheng X, Zhang Z, Jia L et al (2009) Erythropoietin Improved Neurologic Outcomes in Newborns With Hypoxic-Ischemic Encephalopathy. Pediatrics 124:e218–e226. doi:10.1542/peds.2008-3553

    Article  PubMed  Google Scholar 

  74. Kaiser O, Paasche G, Stöver T, Ernst S, Lenarz T, Kral A et al (2013) TGF-beta superfamily member activin A acts with BDNF and erythropoietin to improve survival of spiral ganglion neurons in vitro. Neuropharmacology 75:416–425. doi:10.1016/j.neuropharm.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  75. Lee KY, Nakagawa T, Okano T, Hori R, Ono K, Tabata Y et al (2007) Novel therapy for hearing loss: delivery of insulin-like growth factor 1 to the cochlea using gelatin hydrogel. Otol Neurotol 28:976–981. doi:10.1097/MAO.0b013e31811f40db

    Article  PubMed  Google Scholar 

  76. Digicaylioglu M, Garden G, Timberlake S, Fletcher L (2004) Lipton S a. acute neuroprotective synergy of erythropoietin and insulin-like growth factor I. Proc Natl Acad Sci U S A 101:9855–9860. doi:10.1073/pnas.0403172101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nakagawa T, Sakamoto T, Hiraumi H, Kikkawa YS, Yamamoto N, Hamaguchi K et al (2010) Topical insulin-like growth factor 1 treatment using gelatin hydrogels for glucocorticoid-resistant sudden sensorineural hearing loss: a prospective clinical trial. BMC Med 8:76. doi:10.1186/1741-7015-8-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Acharya A, Coates H, Tavora-Vièira D, Rajan G (2015) A pilot study investigating basic fibroblast growth factor for the repair of chronic tympanic membrane perforations in pediatric patients. Int J Pediatr Otorhinolaryngol 79:332–335

    Article  PubMed  Google Scholar 

  79. Dinh CT, Van De Water TR (2009) Blocking pro-cell-death signal pathways to conserve hearing. Audiol Neurotol 14:383–392. doi:10.1159/000241895

    Article  CAS  Google Scholar 

  80. Eshraghi AA, Van De Water TR (2006) Cochlear implantation trauma and noise-induced hearing loss: apoptosis and therapeutic strategies. Anat Rec A Discov Mol Cell Evol Biol 288 A:473–481. doi:10.1002/ar.a.20305

    Article  Google Scholar 

  81. Ihler F, Pelz S, Coors M, Matthias C, Canis M (2014) Application of a TNF-alpha-inhibitor into the scala tympany after cochlear electrode insertion trauma in guinea pigs: preliminary audiologic results. Int J Audiol 53:810–816. doi:10.3109/14992027.2014.938369

    Article  PubMed  Google Scholar 

  82. Plontke S, Hartsock J, Gill R, Salt A (2016) Intracochlear drug injections through the round window membrane: measures to improve drug retention. Audiol Neurootol 21:72–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hsiao ST-F, Asgari A, Lokmic Z, Sinclair R, Dusting GJ, Lim SY et al (2012) Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue. Stem Cells Dev 21:2189–2203. doi:10.1089/scd.2011.0674

    Article  CAS  PubMed  Google Scholar 

  84. Law S, Chaudhuri S (2013) Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges. Am J Stem Cells 2:22–38

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mabuchi Y, Houlihan D, Okano H, Matsuzaki Y (2012) Discovering the true identity and function of mesenchymal stem cells. Inflamm Regen 32:146–151

    Article  CAS  Google Scholar 

  86. Mabuchi Y, Houlihan DD, Okano H, Matsuzaki Y (2012) Mini review discovering the true identity and function of mes-enchymal stem cells. Inflamm Regen 32:146–151

    Article  CAS  Google Scholar 

  87. Brenes R, Bear M, Jadlowiec C, Goodwin M, Hashim P, Protack C et al (2012) Cell based interventions for therapeutic angiogenesis: review of potential cell sources. Vascular 20:360–368. doi:10.1037/1528-3542.8.3.425.Beyond

    Article  PubMed  PubMed Central  Google Scholar 

  88. Elbana AM, Abdel-Salam S, Morad GM, Ibrahim M, Omran AA (2015) Endogenous bone marrow stem cell mobilization in rats: its potential role in homing and repair of damaged inner ear. Int J Stem Cells 8:146–154. doi:10.1016/j.ejenta.2013.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sharma A, Sane H, Gokulchandran N, Kulkarni P, Gandhi S, Sundaram J et al (2015) A clinical study of autologous bone marrow mononuclear cells for cerebral palsy patients: a new frontier. Stem Cells Int 2015:1–11. doi:10.1155/2015/905874

    Article  CAS  Google Scholar 

  90. Pösel C, Möller K, Fröhlich W, Schulz I, Boltze J, Wagner DC (2012) Density gradient centrifugation compromises bone marrow mononuclear cell yield. PLOS ONE 7:1–10. doi:10.1371/journal.pone.0050293

    Article  CAS  Google Scholar 

  91. Assmus B, Alakmeh S, De Rosa S, Bönig H, Hermann E, Levy WC et al (2015) Improved outcome with repeated intracoronary injection of bone marrow-derived cells within a registry: rationale for the randomized outcome trial REPEAT. Eur Heart J 37:1659. doi:10.1093/eurheartj/ehv559

    Article  PubMed  Google Scholar 

  92. Cai J, Wu Z, Xu X, Liao L, Chen J, Huang L et al (2015) Umbilical cord mesenchymal stromal cell with autologous bone marrow cell transplantation in established type 1 diabetes: a pilot randomized controlled open-label clinical study to assess safety and impact on insulin secretion. Diabetes Care 39:dc150171. doi:10.2337/dc15-0171

    Google Scholar 

  93. Duan F, Qi Z, Liu S, Lu X, Wang H, Gao Y, Wang J (2015) Effectiveness of bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure: An echocardiographic study of left ventricular remodeling. Med Ultrason 17:160–166. doi:10.11152/mu.2013.2066.172.effbm

    Article  PubMed  Google Scholar 

  94. Franz RW, Shah KJ, Pin RH, Hankins T, Hartman JF, Wright ML (2015) Autologous bone marrow mononuclear cell implantation therapy is an effective limb salvage strategy for patients with severe peripheral arterial disease. J Vasc Surg 62:673–680. doi:10.1016/j.jvs.2015.02.059

    Article  PubMed  Google Scholar 

  95. Ruiz-López FJ, Guardiola G, Izura V, Gómez-Espuch J, Iniesta F, Blanquer M, López-San Román J, Saez V, De Mingo P, Martínez S, Moraleda JM (2015) Breathing pattern in a phase I clinical trial of intraspinal injection of autologous bone marrow mononuclear cells in patients with amyotrophic lateral sclerosis. Respir Physiol Neurobiol 221:54–58. doi:10.1016/j.resp.2015.11.007

    Article  PubMed  Google Scholar 

  96. Mann I, Rodrigo SF, Van Ramshorst J, Beeres SL, Dibbets-Schneider P, De Roos A et al (2015) Repeated intramyocardial bone marrow cell injection in previously responding patients with refractory angina again improves myocardial perfusion, anginal complaints, and quality of life. Circ Cardiovasc Interv 8:1–8. doi:10.1161/CIRCINTERVENTIONS.115.002740

    Google Scholar 

  97. Mansour S (2015) Autologous bone marrow mononuclear stem cells for acute myocardial infarction: is it only about time?: Fig. 1. Eur Heart J. doi:10.1093/eurheartj/ehv541

    PubMed  Google Scholar 

  98. Martino H, Brofman P, Greco O, Bueno R, Bodanese L, Clausell N et al (2015) Multicentre, randomized, double-blind trial of intracoronary autologous mononuclear bone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart study). Eur Heart J. doi:10.1093/eurheartj/ehv477

    PubMed Central  Google Scholar 

  99. Mesentier-Louro LA, Zaverucha-do-Valle C, Rosado-de-Castro PH, Silva-Junior AJ, Pimentel-Coelho PM, Mendez-Otero R et al (2016) Bone marrow-derived cells as a therapeutic approach to optic nerve diseases. Stem Cells Int Hindawi Publ Corp 2016:1–16. doi:10.1155/2016/5078619

    Article  Google Scholar 

  100. Moniche F, Escudero I, Zapata-Arriaza E, Usero-Ruiz M, Prieto-León M, de la Torre J et al (2015) Intra-arterial bone marrow mononuclear cells (BM-MNCs) transplantation in acute ischemic stroke (IBIS trial): protocol of a phase II, randomized, dose-finding, controlled multicenter trial. Int J Stroke 10:1149–1152. doi:10.1111/ijs.12520

    Article  PubMed  Google Scholar 

  101. Morales MM, Souza SA, Loivos LP, Lima MA, Szklo A, Vairo L et al (2015) Pilot safety study of intrabronchial instillation of bone marrow-derived mononuclear cells in patients with silicosis. BMC Pulm Med 15:66. doi:10.1186/s12890-015-0061-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Nemoto M, Koyama H, Nishiyama A, Shigematsu K, Miyata T, Watanabe T (2015) Adequate selection of a therapeutic site enables efficient development of collateral vessels in angiogenic treatment with bone marrow mononuclear cells. J Am Heart Assoc 4:e002287. doi:10.1161/JAHA.115.002287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Peeters Weem SMO, Teraa M, den Ruijter HM, de Borst GJ, Verhaar MC, Moll FL (2015) Quality of life after treatment with autologous bone marrow derived cells in no option severe limb ischemia. Eur J Vasc Endovasc Surg 51:83–89. doi:10.1016/j.ejvs.2015.09.010

    Article  PubMed  Google Scholar 

  104. Huang R, Yao K, Sun A, Qian J, Ge L, Zhang Y et al (2015) Timing for intracoronary administration of bone marrow mononuclear cells after acute ST-elevation myocardial infarction: a pilot study. Stem Cell Res Ther 6:112. doi:10.1186/s13287-015-0102-5

    Article  PubMed  PubMed Central  Google Scholar 

  105. Roemer A, Köhl U, Majdani O, Klöß S, Falk C, Haumann S, Lenarz T, Kral A, Warnecke A (2016) Biohybrid cochlear implants in human neurosensory restoration. Stem Cell Res Ther

  106. Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA et al (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841. doi:10.1126/science.284.5421.1837

    Article  CAS  PubMed  Google Scholar 

  107. Lanford PJ, Lan Y, Jiang R, Lindsell C, Weinmaster G, Gridley T et al (1999) Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 21:289–292. doi:10.1038/6804

    Article  CAS  PubMed  Google Scholar 

  108. Hawkins RD, Lovett M (2004) The developmental genetics of auditory hair cells. Hum Mol Genet 13(Suppl 2):R289–R296. doi:10.1093/hmg/ddh249

    Article  CAS  PubMed  Google Scholar 

  109. Bryant J, Goodyear RJ, Richardson GP (2002) Sensory organ development in the inner ear: molecular and cellular mechanisms. Br Med Bull 63:39–57

    Article  CAS  PubMed  Google Scholar 

  110. Jahan I, Pan N, Elliott KL, Fritzsch B (2015) The quest for restoring hearing: Understanding ear development more completely. Bioessays. doi:10.1002/bies.201500044

    PubMed  PubMed Central  Google Scholar 

  111. Wang R, Liu K, Chen L, Aihara K (2011) Neural fate decisions mediated by trans-activation and cis-inhibition in notch signaling. Bioinformatics 27:3158–3165. doi:10.1093/bioinformatics/btr551

    Article  CAS  PubMed  Google Scholar 

  112. Friedman RA, Van Laer L, Huentelman MJ, Sheth SS, Van E, Corneveaux JJ et al (2009) GRM7 variants confer susceptibility to age-related hearing impairment. Hum Mol Genet 18:785–796. doi:10.1093/hmg/ddn402

    Article  CAS  PubMed  Google Scholar 

  113. Burke WF, Warnecke A, Schöner-Heinisch A, Lesinski-Schiedat A, Maier H, Lenarz T (2016) Prevalence and audiological profiles of GJB2 mutations in a large collective of hearing impaired patients. Hear Res 333:77–86. doi:10.1016/j.heares.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  114. Fukui H, Wong HT, Beyer LA, Case BG, Swiderski DL, Di Polo A et al (2012) BDNF gene therapy induces auditory nerve survival and fiber sprouting in deaf Pou4 f3 mutant mice. Sci Rep. doi:10.1038/srep00838

    Google Scholar 

  115. Cunningham LL, Tucci DL (2015) Restoring Synaptic Connections in the Inner Ear after Noise Damage. N Engl J Med 372:181–182. doi:10.1056/NEJMcibr1413201

    Article  CAS  PubMed  Google Scholar 

  116. Sussman S (2006) Translation in the health professions: converting science into action. Eval Health Prof 29:7–32. doi:10.1177/0163278705284441

    Article  PubMed  Google Scholar 

  117. Fishbein DH, Ridenour TA, Stahl M, Sussman S (2016) The full translational spectrum of prevention science: facilitating the transfer of knowledge to practices and policies that prevent behavioral health problems. Transl Behav Med 6:5–16. doi:10.1007/s13142-015-0376-2

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lich KH, Ginexi EM, Osgood ND, Mabry PL (2013) A Call to Address Complexity in Prevention Science Research. Prev Sci 14:279–289. doi:10.1007/s11121-012-0285-2

    Article  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren danken Daniela Beyer für die graphische Umsetzung der Skizzen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Roemer.

Ethics declarations

Interessenkonflikt

A. Roemer, H. Staecker, S. Sasse, T. Lenarz und A. Warnecke geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet unter anderem eigene durchgeführte Studien. Alle im Manuskript beschriebenen Untersuchungen am Menschen wurden in Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor. Bei der Verwendung von Labortieren wurden alle nationalen Richtlinien zur Haltung und Umgang eingehalten. Die notwendigen Zustimmungen liegen den Behörden vor.

Additional information

Die englische Version dieses Beitrags ist unter doi: 10.1007/s00106-016-0306-8 zu finden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roemer, A., Staecker, H., Sasse, S. et al. Biologische Therapien in der Otologie. HNO 65, 571–585 (2017). https://doi.org/10.1007/s00106-016-0304-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-016-0304-x

Schlüsselwörter

Keywords

Navigation