Skip to main content
Log in

Multiple Facetten der genetisch bedingten Hautfragilität

The many facets of inherited skin fragility

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Die genetisch bedingte Hautfragilität umfasst eine Gruppe von heterogenen Erkrankungen, bezeichnet als Epidermolysis bullosa (EB), die mit Bildung von Blasen oder Erosionen nach mechanischer Belastung der Haut einhergehen. Das Spektrum der klinischen Manifestationen ist breit sowie auch der molekulare Hintergrund. Die Haut, aber auch Schleimhäute und andere Organe können mit betroffen sein. In der Praxis sehen wir häufig Patienten mit milder, genetisch bedingter Hautfragilität, die kaum medizinische Betreuung benötigen und oft unter- oder fehldiagnostiziert werden. Die klassischen, eher schweren Subtypen der EB werden meist molekulargenetisch diagnostiziert, um den Familien genetische Beratung und pränatale Diagnostik anbieten zu können. Diese Patienten werden in spezialisierten Zentren medizinisch interdisziplinär betreut. Neben der Wundbehandlung und der Patientenführung, die von der Prognose abhängig ist, untersuchen die Forscher neue gezielte Therapieoptionen. Die modernen Sequenzierungsmethoden ermöglichen die Identifikation neuer, seltener EB-Subtypen.

Abstract

The inherited skin fragility encompasses a heterogeneous group of disorders, collectively designated as epidermolysis bullosa, characterized by recurrent mechanically induced blisters, erosions or wounds. The spectrum of clinical manifestations is broad, as well as the molecular background. Besides the skin, mucosal membranes and other organs can be affected. In real-world practice, patients with mild genetic skin fragility usually do not require medical care and often remain underdiagnosed. In contrast, the well-defined severe EB subtypes are recognized based on typical clinical features. The molecular diagnostics is usually performed in order to allow genetic counselling and prenatal diagnosis. Besides wound care and careful management of the disease complications, new experimental targeted therapies are being developed. New very rare forms of inherited skin fragility have been identified with modern sequencing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Fine JD, Eady RA, Bauer EA et al (2008) The classification of inherited epidermolysis bullosa (EB): report of the Third International Consensus Meeting on Diagnosis and Classification of EB. J Am Acad Dermatol 58:931–950

    Article  PubMed  Google Scholar 

  2. Fine JD, Bruckner-Tuderman L, Eady RA et al (2014) Inherited epidermolysis bullosa: updated recommendations on diagnosis and classification. J Am Acad Dermatol [Epub ahead of print]

  3. Has C, Bruckner-Tuderman L (2011) Epidermolysis bullosa: diagnosis and therapy. Hautarzt 62:82–90

    Article  CAS  PubMed  Google Scholar 

  4. Akker PC van den, Jonkman MF, Rengaw T et al (2011) The international dystrophic epidermolysis bullosa patient registry: an online database of dystrophic epidermolysis bullosa patients and their COL7A1 mutations. Hum Mutat 32(10):1100–1107

    Article  PubMed  Google Scholar 

  5. Wertheim-Tysarowska K, Sobczynska-Tomaszewska A, Kowalewski C et al (2012) The COL7A1 mutation database. Hum Mutat 33:327–331

    Article  CAS  PubMed  Google Scholar 

  6. Kiritsi D, Kern JS, Schumann H et al (2011) Molecular mechanisms of phenotypic variability in junctional epidermolysis bullosa. J Med Genet 48:450–457

    Article  CAS  PubMed  Google Scholar 

  7. Bruckner-Tuderman L, Has C (2012) Molecular heterogeneity of blistering disorders: the paradigm of epidermolysis bullosa. J Invest Dermatol 132:E2–E5

    Article  PubMed  Google Scholar 

  8. Siegel DH, Ashton GH, Penagos HG et al (2003) Loss of kindlin-1, a human homolog of the Caenorhabditis elegans actin-extracellular-matrix linker protein UNC-112, causes Kindler syndrome. Am J Hum Genet 73:174–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Has C, Castiglia D, Rio M del et al (2011) Kindler syndrome: extension of FERMT1 mutational spectrum and natural history. Hum Mutat 32:1204–1212

    Article  CAS  PubMed  Google Scholar 

  10. Groves RW, Liu L, Dopping-Hepenstal PJ et al (2010) A homozygous nonsense mutation within the dystonin gene coding for the coiled-coil domain of the epithelial isoform of BPAG1 underlies a new subtype of autosomal recessive epidermolysis bullosa simplex. J Invest Dermatol 130:1551–1557

    Article  CAS  PubMed  Google Scholar 

  11. Liu L, Dopping-Hepenstal PJ, Lovell PA et al (2012) Autosomal recessive epidermolysis bullosa simplex due to loss of BPAG1-e expression. J Invest Dermatol 132:742–744

    Article  CAS  PubMed  Google Scholar 

  12. McGrath JA, Stone KL, Begum R et al (2012) Germline mutation in EXPH5 implicates the Rab27B effector protein Slac2-b in inherited skin fragility. Am J Hum Genet 91:1115–1121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Pigors M, Kiritsi D, Krumpelmann S et al (2011) Lack of plakoglobin leads to lethal congenital epidermolysis bullosa: a novel clinico-genetic entity. Hum Mol Genet 20:1811–1819

    Article  CAS  PubMed  Google Scholar 

  14. Jonkman MF, Pasmooij AM, Pasmans SG et al (2005) Loss of desmoplakin tail causes lethal acantholytic epidermolysis bullosa. Am J Hum Genet 77:653–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Has C, Sparta G, Kiritsi D et al (2012) Integrin alpha3 mutations with kidney, lung, and skin disease. N Engl J Med 366:1508–1514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Nicolaou N, Margadant C, Kevelam SH et al (2012) Gain of glycosylation in integrin alpha3 causes lung disease and nephrotic syndrome. J Clin Invest 122:4375–4387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kiritsi D, Cosgarea I, Franzke CW et al (2010) Acral peeling skin syndrome with TGM5 gene mutations may resemble epidermolysis bullosa simplex in young individuals. J Invest Dermatol 130:1741–1746

    Article  CAS  PubMed  Google Scholar 

  18. Szczecinska W, Nesteruk D, Wertheim-Tysarowska K et al (2014) Underrecognition of acral peeling skin syndrome: 59 new cases with 15 novel mutations. Br J Dermatol [Epub ahead of print]

  19. Hammami-Hauasli N, Raghunath M, Kuster W et al (1998) Transient bullous dermolysis of the newborn associated with compound heterozygosity for recessive and dominant COL7A1 mutations. J Invest Dermatol 111:1214–1219

    Article  CAS  PubMed  Google Scholar 

  20. Shimizu H, Hammami-Hauasli N, Hatta N et al (1999) Compound heterozygosity for silent and dominant glycine substitution mutations in COL7A1 leads to a marked transient intracytoplasmic retention of procollagen VII and a moderately severe dystrophic epidermolysis bullosa phenotype. J Invest Dermatol 113:419–421

    Article  CAS  PubMed  Google Scholar 

  21. Mellerio JE, Ashton GH, Mohammedi R et al (1999) Allelic heterogeneity of dominant and recessive COL7A1 mutations underlying epidermolysis bullosa pruriginosa. J Invest Dermatol 112:984–987

    Article  CAS  PubMed  Google Scholar 

  22. Schumann H, Has C, Kohlhase J et al (2008) Dystrophic epidermolysis bullosa pruriginosa is not associated with frequent FLG gene mutations. Br J Dermatol 159:464–469

    Article  CAS  PubMed  Google Scholar 

  23. Has C, Burger B, Volz A et al (2010) Mild clinical phenotype of Kindler syndrome associated with late diagnosis and skin cancer. Dermatology 221:309–312

    Article  CAS  PubMed  Google Scholar 

  24. Leverkus M, Ambach A, Hoefeld-Fegeler M et al (2011) Late-onset inversa recessive dystrophic epidermolysis bullosa caused by glycine substitutions in collagen type VII. Br J Dermatol 164:1104–1106

    Article  CAS  PubMed  Google Scholar 

  25. Has C, Kiritsi D, Mellerio JE et al (2014) The missense mutation p.R1303Q in type XVII collagen underlies junctional epidermolysis bullosa resembling Kindler syndrome. J Invest Dermatol 134:845–849

    Article  CAS  PubMed  Google Scholar 

  26. Pasmooij AM, Jonkman MF, Uitto J (2012) Revertant mosaicism in heritable skin diseases – mechanisms of natural gene therapy. Discovery Medicine 14:167–179

    PubMed  Google Scholar 

  27. Jonkman MF, Scheffer H, Stulp R et al (1997) Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell 88:543–551

    Article  CAS  PubMed  Google Scholar 

  28. Kiritsi D, He Y, Pasmooij AM et al (2012) Revertant mosaicism in a human skin fragility disorder results from slipped mispairing and mitotic recombination. J Clin Invest 122:1742–1746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kiritsi D, Garcia M, Brander R et al (2014) Mechanisms of natural gene therapy in dystrophic epidermolysis bullosa. J Invest Dermatol [Epub ahead of print]

  30. Gostynski A, Pasmooij AM, Jonkman MF (2014) Successful therapeutic transplantation of revertant skin in epidermolysis bullosa. J Am Acad Dermatol 70:98–101

    Article  PubMed  Google Scholar 

  31. Fine JD, Mellerio JE (2009) Extracutaneous manifestations and complications of inherited epidermolysis bullosa: part I. Epithelial associated tissues. J Am Acad Dermatol 61:367–384 (quiz 385–386)

    Article  PubMed  Google Scholar 

  32. Mavilio F, Pellegrini G, Ferrari S et al (2006) Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med 12:1397–1402

    Article  CAS  PubMed  Google Scholar 

  33. Remington J, Wang X, Hou Y et al (2009) Injection of recombinant human type VII collagen corrects the disease phenotype in a murine model of dystrophic epidermolysis bullosa. Mol Ther 17:26–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Wagner JE, Ishida-Yamamoto A, McGrath JA et al (2010) Bone marrow transplantation for recessive dystrophic epidermolysis bullosa. N Engl J Med 363:629–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Atkinson SD, McGilligan VE, Liao H et al (2011) Development of allele-specific therapeutic siRNA for keratin 5 mutations in epidermolysis bullosa simplex. J Invest Dermatol 131:2079–2086

    Article  CAS  PubMed  Google Scholar 

  36. Gostynski A, Llames S, Garcia M et al (2014) Long-term survival of type XVII collagen revertant cells in an animal model of revertant cell therapy. J Invest Dermatol 134:571–574

    Article  CAS  PubMed  Google Scholar 

  37. Tolar J, McGrath JA, Xia L et al (2013) Patient-specific naturally gene-reverted induced pluripotent stem cells in recessive dystrophic epidermolysis bullosa. J Invest Dermatol [Epub ahead of print]

  38. Tolar J, Xia L, Lees CJ et al (2013) Keratinocytes from induced pluripotent stem cells in junctional epidermolysis bullosa. J Invest Dermatol 133:562–565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Tolar J, Xia L, Riddle MJ et al (2011) Induced pluripotent stem cells from individuals with recessive dystrophic epidermolysis bullosa. J Invest Dermatol 131:848–856

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Has und D. Kiritsi geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Has.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Has, C., Kiritsi, D. Multiple Facetten der genetisch bedingten Hautfragilität. Hautarzt 65, 490–498 (2014). https://doi.org/10.1007/s00105-013-2711-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-013-2711-1

Schlüsselwörter

Keywords

Navigation