Skip to main content
Log in

„Liver engineering“ als neue Quelle von Spenderorganen

Eine systematische Übersichtsarbeit

Liver engineering as a new source of donor organs

A systematic review

  • Übersichten
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

„Organ engineering“ stellt eine neuartige Strategie zur Minderung des Organmangels dar. Darunter versteht man die Herstellung eines Gerüsts aus explantierten Organen durch Entfernung aller zellulären Bestandteile (Dezellularisierung) und die Besiedelung (Repopularisierung) des Organgerüsts, um ein funktionierendes Organ in vitro für die Transplantation zu generieren. Diese Technik wurde auch für die Leber angepasst („liver engineering“).

Ziel der Arbeit

Darlegung des aktuellen Stands der Forschung des „liver engineering“ und Beschreibung des daraus resultierenden Forschungsbedarfes für die Zukunft.

Material und Methoden

Systematischer Review entsprechend den PRISMA-Richtlinien: Literaturrecherche mittels PUBMED (Suchbegriffe: liver, decellularization), Sichtung und Auswahl der Arbeiten nach Relevanzkriterien (Dezellularisierung, Repopularisierung, Transplantation), Extraktion und kritische Bewertung der relevanten Angaben und Daten bezogen auf die Dezellularisierungs-, Repopularisierungs- und Transplantationsbedingungen

Ergebnisse

Die Dezellularisierung der Leber wurde erfolgreich in Kleintier- und Großtiermodellen gezeigt. Zur Repopularisierung wurden Hepatozyten, Stammzellen und hepatische Zelllinien verwendet. 7 Arbeiten berichteten über die erfolgreiche Transplantation von dezellularisierten bzw. repopularisierten Organgerüsten. Trotz dieser Erfolge gibt es einen erheblichen Forschungsbedarf zur Auswahl des Spenders, Optimierung des Dezellularisierungsverfahrens sowie zur Auswahl der Zelltypen und Etablierung der optimalen Bedingungen für die Repopularisierung. Bei der Repopularisierung müssen 3 Ziele erreicht werden: 1) Besiedelung der Matrix mit einer hinreichenden Zahl an parenchymatösen Zellen, 2) Reendothelialisierung des Gefäßbaums um die Versorgung der Parenchymzellen mit Sauerstoff und Nährstoffen zu ermöglichen und 3) die adäquate Reepithelialisierung des Gallengangs. Für die klinische Umsetzung muss ein geeignetes Transplantationsmodell zur Testung der Funktionsfähigkeit der Organkonstrukte gefunden werden.

Schlussfolgerungen

„Liver engineering“ unter Verwendung biologischer dezellularisierter Organgerüste stellt eine wissenschaftlich-technologische und ethische Herausforderung dar. Die bisherigen Ergebnisse zeigen das Potenzial dieser Strategie auf und lassen erwarten, dass die Generierung von Organen für die Transplantation auf diesem Wege in der Zukunft möglich sein wird.

Abstract

Background

Organ engineering is a new strategy to cope with the shortage of donor organs. A functional scaffold from explanted organs is prepared by removing all cellular components (decellularization) and the reseeding (repopulation) of the organ scaffold to generate a functional organ in vitro for transplantation. This technique was also applied to the liver (liver engineering).

Objectives

Outline of the current state of the art and resulting approaches for future research strategies.

Material and methods

Systematic review according to the PRISMA guidelines: a PubMed-based literature search (search terms liver, decellularization), selection of relevant articles based on predetermined criteria for relevance (e.g. decellularization, repopulation and transplantation), extraction and critical appraisal of data and results concerning the conditions for decellularization, repopulation and transplantation.

Results

Decellularization was successfully performed in small and large animal models. Hepatocytes as well as stem cells and hepatic cell lines were applied for repopulation and 7 publications could show the successful transplantation of acellular and repopulated organ scaffolds. The current scientific need for further studies concerning the source of donor organs, optimization of the decellularization process, the cell type for the reseeding process and the establishment of the optimal conditions for the repopulation of the scaffold is still tremendous. For successful recellularization of the liver three goals need to be achieved: (1) reseeding of the organ scaffold with a sufficient amount of parenchymal cells, (2) endothelialization of the vascular tree to ensure the supply of oxygen and nutrients to parenchymal cells and (3) an appropriate epithelialization of the biliary tree. In order to progress to clinical trials a suitable transplantation model to verify the function of the organ constructs must be established.

Conclusion

Liver engineering using biological cell-free organ scaffolds represents a scientific and ethical challenge. The existing results emphasize the potential of this new and promising strategy to create organs for transplantation in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    Article  CAS  PubMed  Google Scholar 

  2. Bao J, Shi Y, Sun H et al (2011) Construction of a portal implantable functional tissue-engineered liver using perfusion-decellularized matrix and hepatocytes in rats. Cell Transplant 20:753–766

    Article  PubMed  Google Scholar 

  3. Baptista PM, Orlando G, Mirmalek-Sani SH et al (2009) Whole organ decellularization – a tool for bioscaffold fabrication and organ bioengineering. Conf Proc IEEE Eng Med Biol Soc 2009:6526–6529

    PubMed  Google Scholar 

  4. Baptista PM, Siddiqui MM, Lozier G et al (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53:604–617

    Article  CAS  PubMed  Google Scholar 

  5. Barakat O, Abbasi S, Rodriguez G et al (2012) Use of decellularized porcine liver for engineering humanized liver organ. J Surg Res 173:e11–e25

    Article  CAS  PubMed  Google Scholar 

  6. Cheng Y, Wang Y, Kang YZ et al (2013) In vitro culture of tumour-derived hepatocytes in decellularised whole-liver biological scaffolds. Digestion 87:189–195

    Article  CAS  PubMed  Google Scholar 

  7. De Kock J, Ceelen L, De Spiegelaere W et al (2011) Simple and quick method for whole-liver decellularization: a novel in vitro three-dimensional bioengineering tool? Arch Toxicol 85:607–612

    Article  PubMed  Google Scholar 

  8. Gessner RC, Hanson AD, Feingold S et al (2013) Functional ultrasound imaging for assessment of extracellular matrix scaffolds used for liver organoid formation. Biomaterials 34:9341–9351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He H, Liu X, Peng L et al (2013) Promotion of hepatic differentiation of bone marrow mesenchymal stem cells on decellularized cell-deposited extracellular matrix. Biomed Res Int 2013:406871

    PubMed  PubMed Central  Google Scholar 

  10. Hussein KH, Park KM, Teotia PK et al (2013) Fabrication of a biodegradable xenoantigen-free rat liver scaffold for potential drug screening applications. Transplant Proc 45:3092–3096

    Article  CAS  PubMed  Google Scholar 

  11. Jiang WC, Cheng YH, Yen MH et al (2014) Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering. Biomaterials 35:3607–3617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kajbafzadeh AM, Javan-Farazmand N, Monajemzadeh M et al (2013) Determining the optimal decellularization and sterilization protocol for preparing a tissue scaffold of a human-sized liver tissue. Tissue Eng Part C Methods 19:642–651

    Article  CAS  PubMed  Google Scholar 

  13. Kang YZ, Wang Y, Gao Y (2009) [Decellularization technology application in whole liver reconstruct biological scaffold]. Zhonghua Yi Xue Za Zhi 89:1135–1138

    PubMed  Google Scholar 

  14. Lang R, Stern MM, Smith L et al (2011) Three-dimensional culture of hepatocytes on porcine liver tissue-derived extracellular matrix. Biomaterials 32:7042–7052

    Article  CAS  PubMed  Google Scholar 

  15. Lee JS, Shin J, Park HM et al (2014) Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 15:206–218

    Article  CAS  PubMed  Google Scholar 

  16. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med 151:W65–94

    Article  PubMed  Google Scholar 

  17. Mattei G, Di Patria V, Tirella A et al (2014) Mechanostructure and composition of highly reproducible decellularized liver matrices. Acta Biomater 10:875–882

    Article  CAS  PubMed  Google Scholar 

  18. Mirmalek-Sani SH, Sullivan DC, Zimmerman C et al (2013) Immunogenicity of decellularized porcine liver for bioengineered hepatic tissue. Am J Pathol 183:558–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nari GA, Cid M, Comin R et al (2013) Preparation of a three-dimensional extracellular matrix by decellularization of rabbit livers. Rev Esp Enferm Dig 105:138–143

    Article  PubMed  Google Scholar 

  20. Pan MX, Hu PY, Cheng Y et al (2014) An efficient method for decellularization of the rat liver. J Formos Med Assoc 113(10):680–687

    Article  CAS  PubMed  Google Scholar 

  21. Ren H, Shi X, Tao L et al (2013) Evaluation of two decellularization methods in the development of a whole-organ decellularized rat liver scaffold. Liver Int 33:448–458

    Article  CAS  PubMed  Google Scholar 

  22. Sabetkish S, Kajbafzadeh AM, Sabetkish N et al (2015) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix liver scaffolds. J Biomed Mater Res A 103(4):1498–1508

    Article  PubMed  Google Scholar 

  23. Sano MB, Neal RE, Garcia PA et al (2010) Towards the creation of decellularized organ constructs using irreversible electroporation and active mechanical perfusion. Biomed Eng Online 9:83

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shirakigawa N, Ijima H, Takei T (2012) Decellularized liver as a practical scaffold with a vascular network template for liver tissue engineering. J Biosci Bioeng 114:546–551

    Article  CAS  PubMed  Google Scholar 

  25. Soto-Gutierrez A, Zhang L, Medberry C et al (2011) A whole-organ regenerative medicine approach for liver replacement. Tissue Eng Part C Methods 17:677–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Struecker B, Butter A, Hillebrandt K et al (2014) Improved rat liver decellularization by arterial perfusion under oscillating pressure conditions. J Tissue Eng Regen Med. doi:10.1002/term.1948

  27. Struecker B, Hillebrandt KH, Voitl R et al (2015) Porcine liver decellularization under oscillating pressure conditions – a technical refinement to improve the homogeneity of the decellularization process. Tissue Eng Part C Methods 21(3):303–313

    Article  CAS  PubMed  Google Scholar 

  28. Uygun BE, Yarmush ML (2013) Engineered liver for transplantation. Curr Opin Biotechnol 24:893–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Uygun BE, Price G, Saedi N et al (2011) Decellularization and recellularization of whole livers. J Vis Exp. doi:10.3791/2394

  30. Uygun BE, Soto-Gutierrez A, Yagi H et al (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16:814–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Uygun BE, Yarmush ML, Uygun K (2012) Application of whole-organ tissue engineering in hepatology. Nat Rev Gastroenterol Hepatol 9:738–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, Bao J, Wu Q et al (2015) Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts. Xenotransplantation 22(1):48–61

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Cui CB, Yamauchi M et al (2011) Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology 53:293–305

    Article  CAS  PubMed  Google Scholar 

  34. Yagi H, Fukumitsu K, Fukuda K et al (2013) Human-scale whole-organ bioengineering for liver transplantation: a regenerative medicine approach. Cell Transplant 22:231–242

    Article  PubMed  Google Scholar 

  35. Zhou Q, Li L, Li J (2015) Stem cells with decellularized liver scaffolds in liver regeneration and their potential clinical applications. Liver Int 35(3):687–694

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Dahmen.

Ethics declarations

Interessenkonflikt

U. Dahmen gibt an, dass kein Interessenkonflikt besteht.

Patientenrechte und Tierschutzbestimmungen.

Alle nationalen Richtlinien zur Haltung undzum Umgang mit Labortieren wurden eingehaltenund die notwendigen Zustimmungen der zuständigenBehörden liegen vor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mußbach, F., Dahmen, U., Dirsch, O. et al. „Liver engineering“ als neue Quelle von Spenderorganen. Chirurg 87, 504–513 (2016). https://doi.org/10.1007/s00104-015-0015-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-015-0015-y

Schlüsselwörter

Keywords

Navigation