Skip to main content
Log in

Prostate bed target interfractional motion using RTOG consensus definitions and daily CT on rails

Does target motion differ between superior and inferior portions of the clinical target volume?

Interfraktionelle Bewegung der Prostataloge anhand von RTOG-Definitionen und täglichen CT-„on-Rails“

Unterscheidet sich die Zielbewegung der superioren und inferioren Anteile des klinischen Zielvolumens?

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Using high-quality CT-on-rails imaging, the daily motion of the prostate bed clinical target volume (PB-CTV) based on consensus Radiation Therapy Oncology Group (RTOG) definitions (instead of surgical clips/fiducials) was studied. It was assessed whether PB motion in the superior portion of PB-CTV (SUP-CTV) differed from the inferior PB-CTV (INF-CTV).

Patients and methods

Eight pT2-3bN0-1M0 patients underwent postprostatectomy intensity-modulated radiotherapy, totaling 300 fractions. INF-CTV and SUP-CTV were defined as PB-CTV located inferior and superior to the superior border of the pubic symphysis, respectively. Daily pretreatment CT-on-rails images were compared to the planning CT in the left–right (LR), superoinferior (SI), and anteroposterior (AP) directions. Two parameters were defined: “total PB-CTV motion” represented total shifts from skin tattoos to RTOG-defined anatomic areas; “PB-CTV target motion” (performed for both SUP-CTV and INF-CTV) represented shifts from bone to RTOG-defined anatomic areas (i. e., subtracting shifts from skin tattoos to bone).

Results

Mean (± standard deviation, SD) total PB-CTV motion was −1.5 (± 6.0), 1.3 (± 4.5), and 3.7 (± 5.7) mm in LR, SI, and AP directions, respectively. Mean (± SD) PB-CTV target motion was 0.2 (±1.4), 0.3 (±2.4), and 0 (±3.1) mm in the LR, SI, and AP directions, respectively. Mean (± SD) INF-CTV target motion was 0.1 (± 2.8), 0.5 (± 2.2), and 0.2 (± 2.5) mm, and SUP-CTV target motion was 0.3 (± 1.8), 0.5 (± 2.3), and 0 (± 5.0) mm in LR, SI, and AP directions, respectively. No statistically significant differences between INF-CTV and SUP-CTV motion were present in any direction.

Conclusion

There are no statistically apparent motion differences between SUP-CTV and INF-CTV. Current uniform planning target volume (PTV) margins are adequate to cover both portions of the CTV.

Zusammenfassung

Ziel

Zur Evaluation der interfraktionellen Variabilität des klinischen Zielvolumens der Prostataloge (PB-CTV) anhand der Empfehlungen der Radiation Therapy Oncology Group (RTOG) wurden tägliche CT-„on-Rails“-Bildgebungen (anstelle von Clips/Markern) durchgeführt. Untersucht wurde, ob die Bewegung des oberen PB-CTV- (SUP-CTV) von der des unteren PB-CTV-Abschnitts (INF-CTV) abweicht.

Methoden

Acht Patienten (pT2–3bN0–1M0) erhielten nach Prostatektomie eine intensitätsmodulierte Strahlentherapie mit insgesamt 300 Fraktionen. INF-CTV und SUP-CTV wurden als PB-CTV unterhalb und oberhalb der Symphyse gewertet. Die Abweichungen auf den täglichen Lagekontrollen mittels CT-on-Rails wurden mit den initialen Bestrahlungsplanungs-CTs in folgenden Richtungen verglichen: Links-Rechts (LR), superior-inferior (SI) und anteroposterior (AP). Zwei Parameter wurden definiert: „total PB-CTV motion“, welche die Verschiebung der Hauttätowierungen, und „PB-CTV target motion“ (für SUP-CTV und INF-CTV), welche die Verschiebung der knöchernen Strukturen jeweils zu den durch die RTOG definierten anatomischen Strukturen darstellt.

Ergebnisse

Die durchschnittliche „total PB-CTV motion“ (± Standardabweichung) betrug jeweils in LR-, SI- und AP-Richtung −1,5 (± 6,0), 1,3 (± 4,5) und 3,7 (± 5,7) mm, die durchschnittliche „PB-CTV target motion“ 0,2 (± 1,4), 0,3 (± 2,4) und 0,0 (± 3,1) mm, die mittlere Bewegung des INF-CTV 0,1 (± 2,8), 0,5 (± 2,2), und 0,2 (± 2,5) mm und die Varianz des SUP-CTV 0,3 (± 1,8), 0,5 (± 2,3) und 0 (± 5,0) mm. Statistisch signifikante Unterschiede zwischen der INF-CTV- und SUP-CTV-Bewegung konnten in keiner Richtung festgestellt werden.

Schlussfolgerung

SUP-CTV und INF-CTV-Bewegung wiesen keinen signifikanten Unterschied auf. Die aktuellen uniformen Säume des Planungszielvolumens sind adäquat und ausreichend, um beide Anteile des CTV abzudecken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Underwood W 3rd, Jackson J, Wei JT et al (2005) Racial treatment trends in localized/regional prostate carcinoma: 1992–1999. Cancer 103:538–545

    Article  PubMed  Google Scholar 

  2. Parker C, Sydes MR, Catton C et al (2007) Radiotherapy and androgen deprivation in combination after local surgery (RADICALS): a new Medical Research Council/National Cancer Institute of Canada phase III trial of adjuvant treatment after radical prostatectomy. BJU Int 99:1376–1379

    Article  PubMed  Google Scholar 

  3. Thompson IM Jr, Tangen CM, Paradelo J et al (2006) Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized clinical trial. JAMA 296:2329–2335

    Article  CAS  PubMed  Google Scholar 

  4. Bolla M, van Poppel H, Collette L et al (2005) Postoperative radiotherapy after radical prostatectomy: a randomised controlled trial (EORTC trial 22911). Lancet 366:572–578

    Article  PubMed  Google Scholar 

  5. Zelefsky MJ, Aschkenasy E, Kelsen S et al (1997) Tolerance and early outcome results of postprostatectomy three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 39:327–333

    Article  CAS  PubMed  Google Scholar 

  6. Teh BS, Mai WY, Augspurger ME et al (2001) Intensity modulated radiation therapy (IMRT) following prostatectomy: more favorable acute genitourinary toxicity profile compared to primary IMRT for prostate cancer. Int J Radiat Oncol Biol Phys 49:465–472

    Article  CAS  PubMed  Google Scholar 

  7. Wiltshire KL, Brock KK, Haider MA et al (2007) Anatomic boundaries of the clinical target volume (prostate bed) after radical prostatectomy. Int J Radiat Oncol Biol Phys 69:1090–1099

    Article  PubMed  Google Scholar 

  8. Michalski JM, Lawton C, El Naqa I et al (2010) Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 76:361–368

    Article  PubMed  Google Scholar 

  9. Ten Haken RK, Forman JD, Heimburger DK et al (1991) Treatment planning issues related to prostate movement in response to differential filling of the rectum and bladder. Int J Radiat Oncol Biol Phys 20:1317–1324

    Article  CAS  PubMed  Google Scholar 

  10. van Herk M, Bruce A, Kroes AP et al (1995) Quantification of organ motion during conformal radiotherapy of the prostate by three dimensional image registration. Int J Radiat Oncol Biol Phys 33:1311–1320

    Article  PubMed  Google Scholar 

  11. Zelefsky MJ, Happersett L, Leibel SA et al (1997) The effect of treatment positioning on normal tissue dose in patients with prostate cancer treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 37:13–19

    Article  CAS  PubMed  Google Scholar 

  12. Balter JM, Sandler HM, Lam K et al (1995) Measurement of prostate movement over the course of routine radiotherapy using implanted markers. Int J Radiat Oncol Biol Phys 31:113–118

    Article  CAS  PubMed  Google Scholar 

  13. Crook JM, Raymond Y, Salhani D et al (1995) Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother Oncol 37:35–42

    Article  CAS  PubMed  Google Scholar 

  14. Litzenberg D, Dawson LA, Sandler H et al (2002) Daily prostate targeting using implanted radiopaque markers. Int J Radiat Oncol Biol Phys 52:699–703

    Article  PubMed  Google Scholar 

  15. Nederveen AJ, van der Heide UA, Dehnad H et al (2002) Measurements and clinical consequences of prostate motion during a radiotherapy fraction. Int J Radiat Oncol Biol Phys 53:206–214

    Article  PubMed  Google Scholar 

  16. Garsa AA, Verma V, Michalski JM, Gay HA (2014) Transperineal ultrasound-guided implantation of electromagnetic transponders in the prostatic fossa for localization and tracking during external beam radiation therapy. Pract Radiat Oncol 4:415–421

    Article  PubMed  Google Scholar 

  17. Schiffner DC, Gottschalk AR, Lometti M et al (2007) Daily electronic portal imaging of implanted gold seed fiducials in patients undergoing radiotherapy after radical prostatectomy. Int J Radiat Oncol Biol Phys 67:610–619

    Article  PubMed  Google Scholar 

  18. Canter D, Greenberg RE, Horwitz EM et al (2010) Implantation of electromagnetic transponders following radical prostatectomy for delivery of IMRT. Can J Urol 17:5375–5369

    Google Scholar 

  19. Fortin I, Carrier JF, Beauchemin MC, Beliveau-Nadeau D, Delouya G, Taussky D (2014) Using fiducial markers in the prostate bed in postprostatectomy external beam radiation therapy improves accuracy over surgical clips. Strahlenther Onkol 190:467–471

    Article  CAS  PubMed  Google Scholar 

  20. Verma V, Chen L, Michalski JM, et al (2015) Evaluation of 3 T pelvic MRI imaging in prostate cancer patients receiving post-prostatectomy IMRT. World J Urol 33:69–75

    Article  PubMed  Google Scholar 

  21. Klayton T, Price R, Buyyounouski MK et al (2012) Prostate bed motion during intensity-modulated radiotherapy treatment. Int J Radiat Oncol Biol Phys 84(1):130–136

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kupelian PA, Langen KM, Willoughby TR et al (2006) Daily variations in the position of the prostate bed in patients with prostate cancer receiving postoperative external beam radiation therapy. Int J Radiat Oncol Biol Phys 66:593–596

    Article  PubMed  Google Scholar 

  23. Kruse JJ, Herman MG, Hagness BJ, Davis TM, Pisansky TM (2001) Daily monitoring of patient setup variation and prostatic fossa tissue motion with an electronic portal imaging device. Int J Radiat Oncol Biol Phys 31:S387

    Article  Google Scholar 

  24. van Herk M, Bruce A, Kroes AP, Shouman T, Touw A, Lebesque JV (1995) Quantification of organ motion during conformal radiotherapy of the prostate by three-dimensional image registration. Int J Radiat Oncol Biol Phys 33:1311–1320

    Article  PubMed  Google Scholar 

  25. Wang KK, Vapiwala N, Deville C (2012) A study to quantify the effectiveness of daily endorectal balloon for prostate intrafraction motion management. Int J Radiat Oncol Biol Phys 83(3):1055–1063

    Article  PubMed  Google Scholar 

  26. Huang K, Palma DA, Scott D et al (2012) Inter- and intra-fractional uncertainty in prostate bed image-guided radiotherapy. Int J Radiat Oncol Biol Phys 84(2):402–407

    Article  PubMed  Google Scholar 

  27. Bell LJ, Cox J, Eade T, Rinks M, Herschtal A, Kneebone A (2015) Determining optimal planning target volume and image guidance policy for post-prostatectomy intensity modulated radiotherapy. Radiat Oncol 10:151

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rudat V, Nour A, Hammoud M, Alaradi A, Mohammed A (2016) Image-guided intensity-modulated radiotherapy of prostate cancer: analysis of interfractional errors and acute toxicity. Strahlenther Onkol 192:109–117

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew O. Wahl MD.

Ethics declarations

Conflict of interest

V. Verma, S. Chen, S. Zhou, C.A. Enke, and A.O. Wahl declare that they have no competing interests.

This study was approved by the University of Nebraska Medical Center Institutional Review Board and Ethics Committee, and complies with the Helsinki Declaration. All patients’ rights and identifying information were kept confidential. There are no identifiable persons in the manuscript.

Additional information

This study was presented at the 2010 meeting of the American Society for Radiation Oncology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V., Chen, S., Zhou, S. et al. Prostate bed target interfractional motion using RTOG consensus definitions and daily CT on rails. Strahlenther Onkol 193, 38–45 (2017). https://doi.org/10.1007/s00066-016-1077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-1077-6

Keywords

Schlüsselwörter

Navigation