Skip to main content
Log in

Fortschritte bei implantierbaren mechanischen Kreislaufunterstüzungssystemen

Literaturübersicht und Update

Improvements in implantable mechanical circulatory support systems

Literature overview and update

  • Schwerpunkt/CME
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

VADs („ventricular assist devices“) haben durch rasante Weiterentwicklung in den letzten Jahren v. a. im Bereich der langfristigen permanenten mechanischen Kreislaufunterstützung (MCS) an Bedeutung gewonnen. Sowohl die Implantationszahlen wie auch das Alter der Patienten, welche mit einer solchen Therapie behandelt werden, steigen weltweit an. Durch den fortbestehenden Organspendermangel stellen implantierbare VAD mit einem Einjahresüberleben bis zu 86% eine adäquate temporäre Alternative zur Herztransplantation (HTx) dar. In Fällen, bei welchen eine HTx kontraindiziert ist, bleibt die VAD-Implantation als einzige Option, um das langfristige Überleben des Patienten zu sichern. Patientenselektion, prä-, intra- und postoperative Versorgung sowie der Zeitpunkt der VAD-Implantation bestimmen den Erfolg dieser Therapie maßgeblich. Obwohl die Überbrückung zur HTx („bridge to transplantation“, BTT) nach wie vor das Ziel für die meisten Patienten ist, steigt der prozentuale Anteil an permanenten VAD stark an („bridge to destination“, BTD). Eine Explantation eines VAD-Systems als sog. „bridge to recovery“ (BTR) kommt nur für wenige Patienten in Frage, stellt aber einen sehr speziellen Teil dieser Therapieform dar.

Abstract

In recent years, ventricular assist devices (VAD) supporting the left (LVAD), the right (RVAD) or both ventricles (BVAD) have rapidly emerged as the standard of care for advanced heart failure patients. Both the numbers and ages of patients in which they are used are rising worldwide, especially when used as a permanent support (bridge to destination, BTD). Due to the continuing lack of donor organs, these devices now represent a viable alternative to bridge patients to transplantation (BTT), with a 1-year survival rate of 86%. BTD, especially in long-term support, might be a valid, and the sole, option for those patients in whom heart transplantation is contraindicated. Patient selection, pre- and intra-operative preparation, as well as the timing of VAD implantation are important factors critical to successful circulatory support. While BTT remains the goal in the majority of patients, the number of permanent VADs (i. e. BTD) is rising significantly. Although explantation of a VAD system as a bridge to recovery (BTR) can be considered in only a small number of patients, it represents a very special part of this therapy modality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Lower RR, Shumway NE (1960) Studies on orthotopic homotransplantation of the canine heart. Surg Forum 11:18–19

    PubMed  CAS  Google Scholar 

  2. Shumway NE (1963) Transplantation of the Heart. Surg Gynecol Obstet 117:361–362

    PubMed  CAS  Google Scholar 

  3. Shumway NE (1963) Cardiac transplantation. Heart Bull 12:57–60

    PubMed  CAS  Google Scholar 

  4. Liotta D, Hall CW, Henly WS et al (1963) Prolonged assisted circulation during and after cardiac or aortic surgery. Prolonged partial left ventricular bypass by means of intracorporeal circulation. Am J Cardiol 12:399–405

    Article  PubMed  CAS  Google Scholar 

  5. Cooley DA, Liotta D, Hallman GL et al (1969) Orthotopic cardiac prosthesis for two-staged cardiac replacement. Am J Cardiol 24(5):723–730

    Article  PubMed  CAS  Google Scholar 

  6. Potapov EV, Loebe M, Nasseri BA et al (2000) Pulsatile flow in patients with a novel nonpulsatile implantable ventricular assist device. Circulation 102(19 Suppl 3):III183–III187

    PubMed  CAS  Google Scholar 

  7. Wieselthaler GM, Schima H, Lassnigg A et al (1999) The DeBakey VAD axial flow pump: first clinical experience with a new generation of implantable, nonpulsatile blood pumps for long-term support prior to transplantation. Wien Klin Wochenschr 111(16):629–635

    PubMed  CAS  Google Scholar 

  8. Kirklin JK, Naftel DC, Kormos RL et al (2011) Third INTERMACS Annual Report: the evolution of destination therapy in the United States. J Heart Lung Transplant 30(2):115–123

    Article  PubMed  Google Scholar 

  9. Kirklin JK, Naftel DC, Kormos RL et al (2010) Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant 29(1):1–10

    Article  PubMed  Google Scholar 

  10. Kirklin JK, Naftel DC, Stevenson LW et al (2008) INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant 27(10):1065–1072

    Article  PubMed  Google Scholar 

  11. Levy WC, Mozaffarian D, Linker DT et al (2009) Can the Seattle heart failure model be used to risk-stratify heart failure patients for potential left ventricular assist device therapy? J Heart Lung Transplant 28(3):231–236

    Article  PubMed  Google Scholar 

  12. Oz MC, Goldstein DJ, Pepino P et al (1995) Screening scale predicts patients successfully receiving long-term implantable left ventricular assist devices. Circulation 92(Suppl 9):II169–II173

    PubMed  CAS  Google Scholar 

  13. Lietz K, Long JW, Kfoury AG et al (2007) Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era: implications for patient selection. Circulation 116(5):497–505

    Article  PubMed  Google Scholar 

  14. Haj-Yahia S, Birks EJ, Amrani M et al (2009) Bridging patients after salvage from bridge to decision directly to transplant by means of prolonged support with the CentriMag short-term centrifugal pump. J Thorac Cardiovasc Surg 138(1):227–230

    Article  PubMed  Google Scholar 

  15. Loforte A, Potapov E, Krabatsch T et al (2009) Levitronix CentriMag to Berlin Heart Excor: a „bridge to bridge“ solution in refractory cardiogenic shock. ASAIO J 55(5):465–468

    Article  PubMed  Google Scholar 

  16. Bhama JK, Kormos RL, Toyoda Y et al (2009) Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical circulatory support. J Heart Lung Transplant 28(9):971–976

    Article  PubMed  Google Scholar 

  17. Potapov EV, Weng Y, Jurmann M et al (2005) Bridging to transplantability with a ventricular assist device. J Thorac Cardiovasc Surg 130(3):930

    Article  PubMed  CAS  Google Scholar 

  18. Goldstein DJ, Oz MC, Rose EA (1998) Implantable left ventricular assist devices. N Engl J Med 339(21):1522–1533

    Article  PubMed  CAS  Google Scholar 

  19. Aaronson KD, Eppinger MJ, Dyke DB et al (2002) Left ventricular assist device therapy improves utilization of donor hearts. J Am Coll Cardiol 39(8):1247–1254

    Article  PubMed  Google Scholar 

  20. Rose EA, Gelijns AC, Moskowitz AJ et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345(20):1435–1443

    Article  PubMed  CAS  Google Scholar 

  21. Struber M, Sander K, Lahpor J et al (2008) HeartMate II left ventricular assist device; early European experience. Eur J Cardiothorac Surg 34(2):289–294

    Article  PubMed  Google Scholar 

  22. Lahpor J, Khaghani A, Hetzer R et al (2010) European results with a continuous-flow ventricular assist device for advanced heart-failure patients. Eur J Cardiothorac Surg 37(2):357–361

    PubMed  Google Scholar 

  23. Pagani FD, Miller LW, Russell SD et al (2009) Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol 54(4):312–321

    Article  PubMed  Google Scholar 

  24. Starling RC, Naka Y, Boyle AJ et al (2011) Results of the Post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol 57(19):1890–1898

    Article  PubMed  Google Scholar 

  25. Miller LW, Pagani FD, Russell SD et al (2007) Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med 357(9):885–896

    Article  PubMed  CAS  Google Scholar 

  26. Slaughter MS, Rogers JG, Milano CA et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361(23):2241–2251

    Article  PubMed  CAS  Google Scholar 

  27. US Food and Drug Administration (2004) Device approvals and clearences: SynCardia temporary CardioWest total artificial heart (TAH-t) – P030011. http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/Recently-ApprovedDevices/ucm080816.htm

  28. Copeland JG, Smith RG, Arabia FA et al (2004) Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med 351(9):859–867

    Article  PubMed  CAS  Google Scholar 

  29. Morshuis M, Reiss N, Arusoglu L et al (2007) Implantation of CardioWest total artificial heart for irreversible acute myocardial infarction shock. Heart Surg Forum 10(4):E251–E256

    Article  PubMed  CAS  Google Scholar 

  30. Wieselthaler GM, O Driscoll G, Jansz P et al (2010) Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transplant 29(11):1218–1225

    Article  PubMed  Google Scholar 

  31. Sheikh FH, Russell SD (2011) HeartMate® II continuous-flow left ventricular assist system. Expert Rev Med Devices 8(1):11–21

    Article  PubMed  Google Scholar 

  32. Slaughter MS, Pagani FD, Rogers JG et al (2010) Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant 29(Suppl 4):S1–S39

    Article  PubMed  Google Scholar 

  33. Slaughter MS, Tsui SS, El-Banayosy A et al (2007) Results of a multicenter clinical trial with the Thoratec Implantable Ventricular Assist Device. J Thorac Cardiovasc Surg 133(6):1573–1580

    Article  PubMed  Google Scholar 

  34. Dowling RD, Gray LA Jr, Etoch SW et al (2004) Initial experience with the AbioCor implantable replacement heart system. J Thorac Cardiovasc Surg 127(1):131–141

    Article  PubMed  Google Scholar 

  35. Dang NC, Topkara VK, Mercando M et al (2006) Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant 25(1):1–6

    Article  PubMed  Google Scholar 

  36. Miller LW, Nelson KE, Bostic RR et al (2006) Hospital costs for left ventricular assist devices for destination therapy: lower costs for implantation in the post-REMATCH era. J Heart Lung Transplant 25(7):778–784

    Article  PubMed  Google Scholar 

  37. Kukucka M, Stepanenko A, Potapov E et al (2007) Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant 133(6):1573–1580

    Google Scholar 

  38. Puwanant S, Hamilton KK, Klodell CT et al (2008) Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant 27(10):1102–1107

    Article  PubMed  Google Scholar 

  39. Matthews JC, Koelling TM, Pagani FD, Aaronson KD (2008) The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol 51(22):2163–2172

    Article  PubMed  Google Scholar 

  40. Potapov EV, Stepanenko A, Dandel M et al (2008) Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant 27(12):1275–1281

    Article  PubMed  Google Scholar 

  41. Fitzpatrick JR 3rd, Frederick JR, Hsu VM et al (2008) Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant 27(12):1286–1292

    Article  PubMed  Google Scholar 

  42. Drakos SG, Janicki L, Horne BD et al (2010) Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol 105(7):1030–1035

    Article  PubMed  Google Scholar 

  43. Farrar DJ, Reichenbach SH, Rossi SA, Weidman JR (2000) Development of an intracorporeal Thoratec ventricular assist device for univentricular or biventricular support. ASAIO J 46(3):351–353

    Article  PubMed  CAS  Google Scholar 

  44. Reichenbach SH, Farrar DJ, Hill JD (2001) A versatile intracorporeal ventricular assist device based on the thoratec VAD system. Ann Thorac Surg 71(Suppl 3):S171–S175; discussion S83–S84

    Article  PubMed  CAS  Google Scholar 

  45. Drews T, Dandel M, Krabatsch T et al (2011) Long-term mechanical circulatory support in 198 patients: largest single-center experience worldwide. ASAIO J 57(1):9–16

    Article  PubMed  Google Scholar 

  46. Drews TN, Loebe M, Jurmann MJ et al (2003) Outpatients on mechanical circulatory support. Ann Thorac Surg 75(3):780–785; discussion 5

    Article  PubMed  Google Scholar 

  47. Richenbacher WE, Seemuth SC (2001) Hospital discharge for the ventricular assist device patient: historical perspective and description of a successful program. ASAIO J 47(6):590–595

    Article  PubMed  CAS  Google Scholar 

  48. Morales DL, Catanese KA, Helman DN et al (2000) Six-year experience of caring for forty-four patients with a left ventricular assist device at home: safe, economical, necessary. J Thorac Cardiovasc Surg 119(2):251–259

    Article  PubMed  CAS  Google Scholar 

  49. Boyle AJ, Russell SD, Teuteberg JJ et al (2009) Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. J Heart Lung Transplant 28(9):881–887

    Article  PubMed  Google Scholar 

  50. Dandel M, Weng Y, Siniawski H et al (2005) Long-term results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation 112(Suppl 9):I37–I45

    Article  PubMed  Google Scholar 

  51. Frazier OH, Myers TJ (1999) Left ventricular assist system as a bridge to myocardial recovery. Ann Thorac Surg 68(2):734–741

    Article  PubMed  CAS  Google Scholar 

  52. Mancini DM, Beniaminovitz A, Levin H et al (1998) Low incidence of myocardial recovery after left ventricular assist device implantation in patients with chronic heart failure. Circulation 98(22):2383–2389

    PubMed  CAS  Google Scholar 

  53. Krabatsch T, Schweiger M, Dandel M et al (2011) Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems? Ann Thorac Surg 91(5):1335–1340

    Article  PubMed  Google Scholar 

  54. Matsumiya G, Saitoh S, Sakata Y, Sawa Y (2009) Myocardial recovery by mechanical unloading with left ventricular assist system. Circ J 73(8):1386–1392

    Article  PubMed  Google Scholar 

  55. Birks EJ, Tansley PD, Hardy J et al (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med 355(18):1873–1884

    Article  PubMed  CAS  Google Scholar 

  56. Dandel M, Weng Y, Siniawski H et al (2008) Prediction of cardiac stability after weaning from left ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation 118(Suppl 14):S94–S105

    Article  PubMed  Google Scholar 

  57. Hetzer R, Weng Y, Potapov EV et al (2004) First experiences with a novel magnetically suspended axial flow left ventricular assist device. Eur J Cardiothorac Surg 25(6):964–970

    Article  PubMed  Google Scholar 

  58. Krabatsch T, Stepanenko A, Schweiger M et al (2011) Alternative technique for implantation of biventricular support with HeartWare implantable continuous flow pump. ASAIO J 57(4):333–335

    Article  PubMed  Google Scholar 

  59. Pasic M, Bergs P, Hennig E et al (1999) Simplified technique for implantation of a left ventricular assist system after previous cardiac operations. Ann Thorac Surg 67(2):562–564

    Article  PubMed  CAS  Google Scholar 

  60. Stepanenko A, Potapov EV, Krabatsch T, Hetzer R (2011) Simple implantation of a temporary right ventricular device for right ventricular failure after left ventricular device implantation via a left lateral thoracotomy. ASAIO J 57(1):17–18

    Article  PubMed  Google Scholar 

  61. Stepanenko A, Potapov EV, Krabatsch T, Hetzer R (2010) Right ventricular failure after left ventricular assist device implantation with concomitant pulmonary embolectomy needing right ventricular assist device support in a patient with terminal heart failure and asymptomatic pulmonary thrombus. Interact Cardiovasc Thorac Surg 10(1):154–155

    Article  PubMed  Google Scholar 

  62. Potapov E, Meyer D, Swaminathan M et al (2011) Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant 30(8):870–878

    PubMed  Google Scholar 

  63. Potapov EV, Huebler M, Lars M, Hetzer R (2011) Connective tissue overgrowth on a titanium plug inserted to facilitate left ventricular assist device explantation. J Heart Lung Transplant 30(2):235–236

    Article  PubMed  Google Scholar 

  64. Potapov EV, Stepanenko A, Hennig E et al (2010) A titanium plug simplifies left ventricular assist device removal after myocardial recovery. J Heart Lung Transplant 29(11):1316–1317

    Article  PubMed  Google Scholar 

  65. Schweiger M, Stepanenko A, Potapov E et al (2010) Successful implantation of a left ventricular assist device after treatment with the Paracor HeartNet. ASAIO J 56(5):457–459

    Article  PubMed  Google Scholar 

  66. Krabatsch T, Hennig E, Stepanenko A et al (2011) Evaluation of the HeartWare HVAD centrifugal pump for right ventricular assistance in an in vitro model. ASAIO J 57(3):183–187

    Article  PubMed  Google Scholar 

  67. Hetzer R, Krabatsch T, Stepanenko A et al (2010) Long-term biventricular support with the heartware implantable continuous flow pump. J Heart Lung Transplant 29(7):822–824

    Article  PubMed  Google Scholar 

  68. Strueber M, Meyer AL, Malehsa D, Haverich A (2010) Successful use of the HeartWare HVAD rotary blood pump for biventricular support. J Thorac Cardiovasc Surg 140(4):936–937

    Article  PubMed  Google Scholar 

  69. Krabatsch T, Potapov EV, Stepanenko A et al (2010) Biventricular circulatory support with two miniaturized implantable assist devices. Circulation 122:A19427

    Google Scholar 

  70. Klotz S, Meyns B, Simon A et al (2010) Partial mechanical long-term support with the CircuLite Synergy pump as bridge-to-transplant in congestive heart failure. Thorac Cardiovasc Surg 58(Suppl 2):S173–S178

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Schweiger.

Additional information

* Die zwei ersten Autoren teilen sich die Erstautorenschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krabatsch, T., Schweiger, M., Stepanenko, A. et al. Fortschritte bei implantierbaren mechanischen Kreislaufunterstüzungssystemen. Herz 36, 622–629 (2011). https://doi.org/10.1007/s00059-011-3509-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-011-3509-5

Schlüsselwörter

Keywords

Navigation