Skip to main content
Log in

Nonsyndromic oligodontia

Does the Tooth Agenesis Code (TAC) enable prediction of the causative mutation?

Non-syndromale Oligodontien

Kann anhand des Tooth Agenesis Code (TAC) die ursächliche Mutation vorhergesagt werden?

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objectives

The literature suggests an association between phenotype and causative mutation in nonsyndromic oligodontia. Thus, the present study was designed to verify this hypothesis in a consecutive cohort of patients.

Methods

All patients with nonsyndromic oligodontia who had been treated at the study center (Department of Orthodontics, University of Giessen, Germany) over the period 1986–2013 were contacted. Candidates were included only if at least one more family member had hypo- or oligodontia (i.e., without regard to the number of congenitally missing teeth). A total of 20 patients were included. After evaluating the dental status of each participant, the Tooth Agenesis Code (TAC) was applied. On this basis, a tentative diagnosis was made to predict which gene (MSX1, AXIN2, EDA, or PAX9) was likely to show mutation. Afterwards this hypothesis was confirmed or rejected by analyzing a saliva sample for mutation of the predicted gene. If confirmed, any available family members were also genetically analyzed.

Results

Based on their TAC scores and sums, gene mutations were predicted for MXS1 in 11, AXIN2 in 3, EDA in 6, and PAX9 in none of the patients. The evaluation of MSX1 yielded variants in 4 of 11 cases, all of which were classified as nonpathogenic since they were not considered as functional mutations. The evaluation of EDA yielded a pathogenic exon-7 mutation in 2 of 6 patients, both being brothers with different TAC scores; the same mutation, which represents a novel missense mutation, was also found in other members of the same family. The evaluation of AXIN2 yielded variants in 3 of 3 cases, all of which were classified as nonpathogenic.

Conclusions

Our findings obtained in consecutive patients with nonsyndromic oligodontia did not reveal any clinically relevant associations between oligodontia phenotype (based on TAC) and causative mutations for nonsyndromic oligodontia.

Zusammenfassung

Ziel

Ziel der vorliegenden Studie war es, den in der Literatur für non-syndromale Oligodontien beschriebenen Zusammenhang zwischen Phänotyp und ursächlicher Mutation an einem konsekutiven Oligodontie-Patientengut zu verifizieren.

Material und Methode

Alle Patienten der Poliklinik für Kieferorthopädie (Justus-Liebig-Universität Gießen; Behandlung 1986–2013) mit non-syndromaler Oligodontie wurden kontaktiert. Außerdem musste mindestens ein weiterer Fall von Hypo-/Oligodontie in der Familie vorliegen. Nach Erhebung des Zahnstatus wurden die Nichtanlagedaten mit Hilfe des Tooth Agenesis Codes (TAC) analysiert und anschließend eine Prognose hinsichtlich von Mutationen der Gene MSX1, EDA, PAX9 und AXIN2 gestellt. Mittels Speichelproben erfolgte anschließend eine Mutationssuche im prognostizierten Gen. Bei positivem Untersuchungsergebnis wurden außerdem alle verfügbaren Familienmitglieder genetisch untersucht.

Ergebnisse

Insgesamt 20 Patienten wurden in die Studie aufgenommen. Auf Grundlage des TAC-Codes bzw. der TAC-Summen ergaben sich folgende Mutationsvermutungen: Bei 11 Patienten bestand der Verdacht auf eine Mutation in MSX1, bei 3 auf eine Mutation in AXIN2 und bei 6 auf eine Mutation in EDA. Bei keinem Patienten bestand Verdacht auf eine Mutation in PAX9. MSX1: Die Untersuchung ergab in 4 Fällen Varianten, die allerdings allesamt nicht als pathologisch einzustufen sind, da sie keine funktionelle Mutation verursachen. EDA: Zwei Patienten derselben Familie zeigten eine pathologische Mutation in Exon 7 des Gens, welche anschließend auch bei Familienangehörigen gefunden wurde und eine neue Punktmutation darstellt. AXIN2: Keiner der Patienten mit der Verdachtsdiagnose zeigte eine Mutation des Gens.

Schlussfolgerung

Im Rahmen der vorliegenden Untersuchung war es auf Basis des TAC für non-syndromal bedingte Oligodontien nur für 10% des konsekutiven Oligodontiepatientengutes möglich, einen Zusammenhang zwischen dem Phänotyp der Oligodentie und der ursächlichen Mutation darzustellen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Emran S (1990) Prevalence of hypodontia and developmental malformation of permanent teeth in Saudi Arabian school children. Br J Orthod 17:115–118

    Article  PubMed  Google Scholar 

  2. Arcuri C, Zito I, Santini F et al (2011) Understanding the implications of the PAX9 gene in tooth development. Eur J Paediatr Dent 12:245–248

    Article  PubMed  Google Scholar 

  3. Arte S, Nieminen P, Apajalahti S et al (2001) Characteristics of incisor-premolar hypodontia in families. J Dent Res 80:1445–1450

    Article  PubMed  Google Scholar 

  4. Ayub M, Ur-Rehman F, Yasinzai M et al (2010) A novel missense mutation in the ectodysplasin-A (EDA) gene underlies X-linked recessive nonsyndromic hypodontia. Int J Dermatol 49:1399–1402

    Article  PubMed  Google Scholar 

  5. Behr M, Proff P, Leitzmann M et al (2011) Survey of congenitally missing teeth in orthodontic patients in Eastern Bavaria. Eur J Orthod 33:32–36

    Article  PubMed  Google Scholar 

  6. Bergendal B, Klar J, Stecksén-Blicks C et al (2011) Isolated oligodontia associated with mutations in EDARADD, AXIN2, MSX1, and PAX9 genes. Am J Med Genet A 155A:1616–1622

    Article  PubMed  Google Scholar 

  7. Bodine PV, Komm BS (2006) Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord 7:33–39

    Article  PubMed  Google Scholar 

  8. Boeira Junior BR, Echeverrigaray S (2013) Novel missense mutation in PAX9 gene associated with familial tooth agenesis. J Oral Pathol Med 42:99–105

    Article  Google Scholar 

  9. Boruchov MJ, Green LJ (1971) Hypodontia in human twins and families. Am J Orthod 60:165–174

    Article  PubMed  Google Scholar 

  10. Brook AH (1974) Dental anomalies of number, form and size: their prevalence in British school children. J Inst Ass dent Child 5:37–53

    Google Scholar 

  11. Brook AH (1984) A unifying aetiological explanation for anomalies of human tooth number and size. Archs Oral Biol 29:373–378

    Article  Google Scholar 

  12. Cawthorn WP, Bree AJ, Yao Y et al (2012) Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a ß-catenin-dependent mechanism. Bone 50:477–489

    Article  PubMed  Google Scholar 

  13. Chalothorn LA, Beeman CS, Ebersole JL et al (2008) Hypodontia as a risk marker for epithelial ovarian cancer: a case-controlled study. J Am Dent Assoc 139:163–169

    Article  PubMed  Google Scholar 

  14. Chosack A, Eidelman E, Cohen T (1975) Hypodontia: a polygenic trait—a family study among Israeli Jews. J Dent Res 54:16–19

    Article  PubMed  Google Scholar 

  15. Das P, Stockton DW, Bauer C et al (2002) Haploinsufficiency of PAX9 is associated with autosomal dominant hypodontia. Hum Genet 110:371–376

    Article  PubMed  Google Scholar 

  16. Das P, Hai M, Elcock C et al (2003) Novel missense mutations and a 288-bp exonic insertion in PAX9 in families with autosomal dominant hypodontia. Am J Med Genet A 118A:35–42

    Article  PubMed  Google Scholar 

  17. Davis PJ (1987) Hypodontia and hyperdontia of permanent teeth in Hong Kong school children. Community Dent Oral Epidemiol 15:218–220

    Article  PubMed  Google Scholar 

  18. De Muynck S, Schollen E, Matthijs G et al (2004) A novel MSX1 mutation in hypodontia. Am J Med Genet A 128A:401–403

    Article  PubMed  Google Scholar 

  19. Frazier-Bowers SA, Guo DC, Cavender A et al (2002) A novel mutation in human PAX9 causes molar oligodontia. J Dent Res 81:129–133

    Article  PubMed  Google Scholar 

  20. Gong Y, Feng HL, He HY et al (2010) Correlation between the phenotype and genotype of tooth agenesis patients by tooth agenesis code. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 32:254–259

    PubMed  Google Scholar 

  21. Han D, Gong Y, Wu H et al (2008) Novel EDA mutation resulting in X-linked non-syndromic hypodontia and the pattern of EDA-associated isolated tooth agenesis. Eur J Med Genet 51:536–546

    Article  PubMed  Google Scholar 

  22. Hansen L, Kreiborg S, Jarlov H et al (2007) A novel nonsense mutation in PAX9 is associated with marked variability in number of missing teeth. Eur J Oral Sci 115:330–333

    Article  PubMed  Google Scholar 

  23. Jumlongras D, Lin JY, Chapra A et al (2004) A novel missense mutation in the paired domain of PAX9 causes non-syndromic oligodontia. Hum Genet 114:242–249

    Article  PubMed  Google Scholar 

  24. Kapadia H, Frazier-Bowers S, Ogawa T et al (2006) Molecular characterization of a novel PAX9 missense mutation causing posterior tooth agenesis. Eur J Hum Genet 14:403–409

    Article  PubMed  Google Scholar 

  25. Kere J, Srivastava AK, Montonen O et al (1996) X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet 13:409–416

    Article  PubMed  Google Scholar 

  26. Lammi L, Halonen K, Pirinen S et al (2003) A missense mutation in PAX9 in a family with distinct phenotype of oligodontia. Eur J Hum Genet 11:866–871

    Article  PubMed  Google Scholar 

  27. Lammi L, Arte S, Somer M et al (2004) Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 74:1043–1050

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li WL, Cui JJ, Fang QY et al (2008) A novel mutation of MSX1 gene in a Chinese pedigree with oligodontia. Zhonghua Kou Qiang Yi Xue Za Zhi 43:157–159

    PubMed  Google Scholar 

  29. Lidral AC, Reising BC (2002) The role of MSX1 in human tooth agenesis. J Dent Res 81:274–278

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mostowska A, Biedziak B, Trzeciak WH (2006) A novel c.581C > T transition localized in a highly conserved homeobox sequence of MSX1: is it responsible for oligodontia? J Appl Genet 47:159–164

    Article  PubMed  Google Scholar 

  31. Mostowska A, Biedziak B, Zadurska M et al (2013) Nucleotide variants of genes encoding components of the Wnt signalling pathway and the risk of non-syndromic tooth agenesis. Clin Genet 84:429–440

    Article  PubMed  Google Scholar 

  32. Mues GI, Griggs R, Hartung AJ et al (2009) From ectodermal dysplasia to selective tooth agenesis. Am J Med Genet Part A 149A:2037–2041

    Article  PubMed  Google Scholar 

  33. Mues G, Tardivel A, Willen L et al (2010) Functional analysis of ectodysplasin-A mutations causing selective tooth agenesis. Eur J Hum Genet 18:19–25

    Article  PubMed  Google Scholar 

  34. Nieminen P, Arte S, Tanner D et al (2001) Identification of a nonsense mutation in the PAX9 gene in molar oligodontia. Eur J Hum Genet 9:743–746

    Article  PubMed  Google Scholar 

  35. Nunn JH, Carter NE, Gillgrass TJ et al (2003) The interdisciplinary management of hypodontia: background and role of paediatric dentistry. Br Dent J 194:245–251

    Article  PubMed  Google Scholar 

  36. Paixão-Côrtes VR, Braga T, Salzano FM et al (2011) PAX9 and MSX1 transcription factor genes in non-syndromic dental agenesis. Arch Oral Biol 56:337–344

    Article  PubMed  Google Scholar 

  37. Parkin N, Elcock C, Smith RN et al (2009) The aetiology of hypodontia: the prevalence, severity and location of hypodontia within families. Arch Oral Biol 54S:S52–S56

    Article  Google Scholar 

  38. Peters H, Neubüser A, Kratochwil K et al (1998) Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 12:2735–2747

    Article  PubMed  PubMed Central  Google Scholar 

  39. Polder BJ, Van’t Hof MA, Van der Linden FP et al (2004) A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dent Oral Epidemiol 32:217–226

    Article  PubMed  Google Scholar 

  40. Rasool M, Schuster J, Aslam M et al (2008) A novel missense mutation in the EDA gene associated with X-linked recessive isolated hypodontia. J Hum Genet 53:894–898

    Article  PubMed  Google Scholar 

  41. Rølling S, Poulsen S (2001) Oligodontia in Danish school children. Acta Odontol Scand 59:111–112

    Article  PubMed  Google Scholar 

  42. Ruf S, Klimas D, Hönemann M et al (2013) Genetic background of nonsyndromic oligodontia: a systematic review and meta-analysis. J Orofac Orthop 74:295–308

    Article  PubMed  Google Scholar 

  43. Ruiz-Heiland G, Jabir S, Wende W et al (2016) Novel missense mutation in the EDA gene in a family affected by oligodontia. J Orofac Orthop 77:31–38

    Article  PubMed  Google Scholar 

  44. Salem G (1989) Prevalence of selected dental anomalies in Saudi children from Gizan region. Community Dent Oral Epidemiol 17:162–163

    Article  PubMed  Google Scholar 

  45. Satokata I, Maas R (1994) Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6:348–356

    Article  PubMed  Google Scholar 

  46. Schalk-van der Weide Y, Steen WH, Bosman F (1992) Distribution of missing teeth and tooth morphology in patients with oligodontia. ASDC J Dent Child 59:133–140

    PubMed  Google Scholar 

  47. Song S, Han D, Qu H et al (2009) EDA gene mutations underlie non-syndromic oligodontia. J Dent Res 88:126–131

    Article  PubMed  PubMed Central  Google Scholar 

  48. Stockton DW, Das P, Goldenberg M et al (2000) Mutation of PAX9 is associated with oligodontia. Nat Genet 24:18–19

    Article  PubMed  Google Scholar 

  49. Tao R, Jin B, Guo SZ et al (2006) A novel missense mutation of the EDA gene in a Mongolian family with congenital hypodontia. J Hum Genet 51:498–502

    Article  PubMed  Google Scholar 

  50. Tarpey P, Pemberton TJ, Stockton DW et al (2007) A novel Gln358Glu mutation in ectodysplasin A associated with X-linked dominant incisor hypodontia. Am J Med Genet A 143:390–394

    Article  PubMed  Google Scholar 

  51. Thesleff I, Nieminen P (1996) Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol 8:844–850

    Article  PubMed  Google Scholar 

  52. van den Boogaard MJ, Créton M, Bronkhorst Y et al (2012) Mutations in WNT10A are present in more than half of isolated hypodontia cases. J Med Genet 49:327–331

    Article  PubMed  Google Scholar 

  53. van den Boogaard MJ, Dorland M, Beemer FA et al (2000) MSX1 mutation is associated with orofacial cleftingand tooth agenesis in humans. Nat Genet 24:342–343

    Article  PubMed  Google Scholar 

  54. van Wijk AJ, Tan SP (2006) A numeric code for identifying patterns of human tooth agenesis: a new approach. Eur J Oral Sci 114:97–101

    Article  PubMed  Google Scholar 

  55. Vastardis H, Karimbux N, Guthua SW et al (1996) A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet 13:417–421

    Article  PubMed  Google Scholar 

  56. Vieira AR, Meira R, Modesto A et al (2004) MSX1, PAX9, and TGFA contribute to tooth agenesis in humans. J Dent Res 83:723–727

    Article  PubMed  Google Scholar 

  57. Wu CCL, Wong RWK, Hägg U (2007) A review of hypodontia: the possible etiologies and orthodontic, surgical and restorative treatment options—conventional and futuristic. Hong Kong Dent J 4:113–121

    Google Scholar 

  58. Yan Y, Tang D, Chen M et al (2009) Axin2 controls bone remodeling through the beta-catenin-BMP signaling pathway in adult mice. J Cell Sci 122:3566–3578

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zhu J, Yang X, Zhang C et al (2012) A novel nonsense mutation in PAX9 is associated with sporadic hypodontia. Mutagenesis 27:313–317

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the German Orthodontic Society (DGKFO) for providing support for this research project from its Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko C. Bock.

Ethics declarations

Conflict of interest

N. C. Bock, S. Jabir, G. Ruiz-Heiland, and S. Ruf declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bock, N.C., Lenz, S., Ruiz-Heiland, G. et al. Nonsyndromic oligodontia. J Orofac Orthop 78, 112–120 (2017). https://doi.org/10.1007/s00056-016-0056-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-016-0056-y

Keywords

Schlüsselwörter

Navigation