Skip to main content
Log in

Friction behavior of self-ligating and conventional brackets with different ligature systems

Reibungsverhalten von selbstligierenden und konventionellen Brackets mit verschiedenen Ligatursystemen

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objectives

Self-ligating brackets are widely believed to offer better clinical efficiency and, in particular, less friction. Thus, the goal of this in vitro investigation was to assess the friction behavior of different bracket/archwire/ligature combinations during simulated canine retraction. An important aspect of this work was to determine whether conventional bracket systems behave differently in passive or active self-ligating brackets used with a Slide™ ligature, an elastic ligature, or a steel ligature.

Methods

Three conventional (Contour, Class One; Discovery®, Dentaurum; Mystique MB, GAC) and six self-ligating (Carriere SL, Class One; Clarity™ SL, 3M Unitek; Damon3, Ormco; In-Ovation® C, GAC; Speed Appliance, Speed System™; QuicKlear®, Forestadent®) bracket systems were analyzed. All brackets featured a 0.022″ slot (0.56 mm). Each conventional system was tested with a steel ligature (0.25 mm; Remanium®, Dentaurum), an elastic ligature (1.3 mm in diameter; Dentalastics, Dentaurum), and a modified elastic ligature (Slide™; Leone®). Each combination was used with four archwires, including rectangular stainless steel (0.46 × 0.64 mm, 0.018 × 0.025″, Dentaurum), rectangular nickel–titanium with Teflon coating (0.46 × 0.64 mm, 0.018 × 0.025″, Forestadent®), round coaxial nickel–titanium (0.46 mm, 0.018″, Speed), and half-round/half-square (D-profile) stainless steel (0.46 mm, 0.018″, Speed). In the orthodontic measurement and simulation system (OMSS), retraction of a canine was simulated on a Frasaco model replicated in resin. Based on the force systems, the respective friction values were determined. For each combination of materials, five brackets of the same type were tested and five single measurements performed.

Results

Friction values were found to vary distinctly with the different combinations, modifiers being the ligature systems and the archwire types. Any significant friction differences between the steel-ligated, Slide™-ligated, and self-ligated brackets were sporadic. All three systems were associated with average friction values of 40 %. Active self-ligating brackets and elastic-ligated conventional brackets, by contrast, generally differed significantly from the three above-mentioned bracket systems and showed distinctly higher friction values averaging 59 and 67 %, respectively.

Conclusions

While passive self-ligating bracket systems have frequently been touted as advantageous in the literature, they should not be regarded as the only favorable system. Steel-ligated and Slide™-ligated conventional bracket systems are capable of offering similar friction performance.

Zusammenfassung

Hintergrund und Ziel

Selbstligierenden Brackets wird häufig eine erhöhte klinische Effizienz und vor allem geringere Reibung zugesprochen. Ziel dieser In-vitro-Untersuchung war es daher, das Reibungsverhalten verschiedener Bracket/Drahtbogen/Ligatur-Kombinationen während einer simulierten Eckzahnretraktion zu untersuchen. Dabei war es ein wichtiger Aspekt festzustellen, ob sich konventionelle Bracketsysteme mit Slide™-Ligatur, Elastic-Ligatur oder Stahlligatur anders verhalten als passiv oder aktiv selbstligierende Brackets.

Material und Methodik

Untersucht wurden 3 konventionelle (Contour, Class One; Discovery®, Dentaurum; Mystique MB, GAC) sowie 6 selbstligierende Bracketsysteme (Carriere SL, Class One; Clarity™ SL, 3M Unitek; Damon3, Ormco; In-Ovation® C, GAC; Speed Appliance, Speed System™; QuicKlear®, Forestadent®). Alle Brackets hatten einen 0,022-inch-Slot (0,56 mm). Mit Ausnahme der selbstligierenden Systeme wurden alle konventionellen Systeme mit einer Stahlligatur (0,25 mm, Remanium®, Dentaurum), einer elastischen Gummiligatur (Ø 1,3 mm Dentalastics, Dentaurum) und einer modifizierten elastischen Ligatur (Slide™-Ligatur, Leone®) gemessen. Die folgenden Kombinationen wurden unter Verwendung dieser 4 Drähte untersucht: Edelstahl-Vierkant-Drahtbogen (0,46 × 0,64 mm, 0,018 × 0,025 inch, Dentaurum), Nickel-Titan-Vierkant-Drahtbogen mit Teflonbeschichtung (0,46 × 0,64 mm, 0,018 × 0,025 inch, Forestadent®) und als Rundbogen ein Koaxial/Nickel-Titan-Drahtbogen (0,46 mm, 0,018 inch, Speed) sowie ein halbeckiger/halbrunder Edelstahldrahtbogen mit D-förmigem Querschnitt (0,46 mm, 0,018 inch, Speed). Das orthodontische Mess- und Simulationssystem (OMSS) diente zur Simulation einer Eckzahnretraktion an der Kunststoffreplika eines Frasaco-Modells. Auf Grundlage der Kraftsysteme wurden jeweils die Friktionswerte ermittelt. Für jede Materialkombination wurden 5 Brackets des gleichen Herstellers untersucht und jeweils 5 Einzelmessungen durchgeführt.

Ergebnisse

Die Reibungswerte variierten deutlich bei den verschiedenen Materialkombinationen in Abhängigkeit vom verwendeten Ligatursystem und Drahtbogentyp. Stahlligierte und Slide™-ligierte konventionelle Bracketsysteme sowie passiv selbstligierende Brackets unterschieden sich bei Edelstahlbögen in ihren Friktionsergebnissen nur in Einzelfällen signifikant voneinander. Alle 3 Systeme erzielten Friktionswerte von durchschnittlich 40 %. Aktiv selbstligierende Brackets und Elastic-ligierte konventionelle Brackets unterschieden sich dagegen meist signifikant von den 3 oben genannten Bracketsystemen und zeigten mit durchschnittlich 59 und 67 % deutlich höhere Friktionswerte.

Schlussfolgerung

Mit der vorliegenden Untersuchung konnte nachgewiesen werden, dass nicht nur den in der Literatur häufig mit Vorteilen beworbenen selbstligierenden Bracketsystemen eine Präferenz auszusprechen ist. Mit stahlligierten und mit Slide™-ligierten konventionellen Bracketsystemen lassen sich gleichwertige Friktionsergebnisse erreichen wie mit passiv selbstligierenden Bracketsystemen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baccetti T, Franchi L (2006) Friction produced by types of elastomeric ligatures in treatment mechanics with the preadjusted appliance. Angle Orthod 76:211–216

    PubMed  Google Scholar 

  2. Baccetti T, Franchi L, Camporesi M (2008) Forces in the presence of ceramic versus stainless steel brackets with unconventional vs. conventional ligatures. Angle Orthod 78:120–124

    Article  PubMed  Google Scholar 

  3. Bednar JR, Gruendemann GW, Sandrik JL (1991) A comparative study of frictional forces between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop 100:513–522

    Article  PubMed  Google Scholar 

  4. Bourauel C, Drescher D, Thier M (1992) An experimental apparatus for the simulation of three-dimensional movements in orthodontics. J Biomed Eng 14:371–378

    Article  PubMed  Google Scholar 

  5. Bourauel C, Drescher D, Nolte LP (1993) Computergestützte Entwicklung kieferorthopädischer Behandlungselemente aus NiTi-Memory-Legierungen am Beispiel einer pseudoelastischen Retraktionsfeder. Fortschr Kieferorthop 54:45–56

    Article  PubMed  Google Scholar 

  6. Bourauel C, Fries T, Drescher D et al (1998) Surface roughness of orthodontic wires via atomic force microscopy, laser specular reflectance and profilometry. Eur J Orthodont 20:79–92

    Article  Google Scholar 

  7. Camporesi M, Baccetti T, Franchi L (2007) Forces released by esthetic preadjusted appliances with low-friction and conventional elastomeric ligatures. Am J Orthod Dentofacial Orthop 131:772–775

    Article  PubMed  Google Scholar 

  8. Condo R, Casaglia A, Armellin E et al (2013) Traditional elastic ligatures versus slide ligation system. A morphological evaluation. Oral Implantol 6:15–24

    Google Scholar 

  9. Drescher D, Bourauel C, Schumacher HA (1989) Frictional forces between bracket and arch wire. Am J Orthod Dentofac Orthop 96:397–404

    Article  Google Scholar 

  10. Drescher D, Bourauel C, Thier M (1990) Materialtechnische Besonderheiten orthodontischer Nickel-Titan-Drähte. Fortschr Kieferorthop 51:320–326

    Article  PubMed  Google Scholar 

  11. Drescher D, Bourauel C, Thier M (1991) Orthodontische Meß- und Simulationssystem (OMSS) für die statische und dynamische Analyse der Zahnbewegung. Fortschr Kieferorthop 52:133–140

    Article  PubMed  Google Scholar 

  12. Elayyan F, Silikas N, Bearn D (2008) Ex vivo surface and mechanical properties of coated orthodontic archwires. Eur J Orthod 30:661–667

    Article  PubMed  Google Scholar 

  13. Farronato G, Maijer R, Caria MP et al (2012) The effect of Teflon coating on the resistance to sliding of orthodontic archwires. Eur J Orthod 34:410–417

    Article  PubMed  Google Scholar 

  14. Franchi L, Baccetti T (2006) Forces released during alignment with a preadjusted appliance with different types of elastomeric ligatures. Am J Orthod Dentofacial Orthop 129:687–690

    Article  PubMed  Google Scholar 

  15. Frank CA, Nikolai RJ (1980) A comparative study of frictional resistances between orthodontic brackets and archwire. Am J Orthod 78:593–609

    Article  PubMed  Google Scholar 

  16. Gandini P, Orsi L, Bertoncini C et al (2008) In vitro frictional forces generated by three different ligation methods. Angle Orthod 78:917–921

    Article  PubMed  Google Scholar 

  17. Harradine NW (2003) Self-ligating brackets: where are we now? J Orthod 30:262–273

    Article  PubMed  Google Scholar 

  18. Husmann P, Bourauel C, Wessinger M et al (2002) The frictional behavior of coated guiding archwires. J Orofac Orthop 63:199–211

    Article  PubMed  Google Scholar 

  19. Jones SP, Ben Bihi S (2009) Static frictional resistance with the slide low-friction elastomeric ligature system. Aust Orthod J 25:136–141

    PubMed  Google Scholar 

  20. Le Gall M, Bachet C, Dameron C (2014) The time needed to refit an orthodontic wire: influence of the attachments. Int Orthod 12:431–444

    PubMed  Google Scholar 

  21. Mendes B de AB, Ferreira RAN, Pithon MM et al (2014) Physical and chemical properties of orthodontic brackets after 12 and 24 months: in situ study. J Appl Oral Sci 22:194–203

  22. Montasser MA, El-Bialy T, Keilig L et al (2014) Force loss in archwire-guided tooth movement of conventional and self-ligating brackets. Eur J Orthod 36:31–38

    Article  PubMed  Google Scholar 

  23. Monteiro MR, Silva LE, Elias CN et al (2014) Frictional resistance of self-ligating versus conventional brackets in different bracket–archwire–angle combinations. J Appl Oral Sci 22:228–234

    Article  PubMed  PubMed Central  Google Scholar 

  24. Neumann P, Bourauel C, Jäger A (2002) Corrosion and permanent fracture resistance of coated and conventional orthodontic wires. J Mater Sci Mater Med 13:141–147

    Article  PubMed  Google Scholar 

  25. Oliver CL, Daskalogiannakis J, Tompson BD (2011) Archwire depth is a significant parameter in the frictional resistance of active and interactive, but not passive, self-ligating brackets. Angle Orthod 81:1036–1044

    Article  PubMed  Google Scholar 

  26. Paduano S, Cioffi I, Iodice G et al (2008) Time efficiency of self-ligating vs conventional brackets in orthodontics: effect of appliances and ligating systems. Prog Orthod 9:74–80

    PubMed  Google Scholar 

  27. Read-Ward GE, Jones SP, Davies EH (1997) A comparsion of self-ligating and conventional orthodontic bracket systems. Br J Orthod 24:309–317

    Article  PubMed  Google Scholar 

  28. Reddy VB, Kumar TA, Prasad M et al (2014) A comparative in vivo evaluation of the alignment efficiency of 5 ligation methods: a prospective randomized clinical trial. Eur J Dent 8:23–31

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schumacher HA, Bourauel C, Drescher D (1990) Der Einfluß der Ligatur auf die Friktion zwischen Bracket und Bogen. Fortschr Kieferorthop 51:106–116

    Article  PubMed  Google Scholar 

  30. Schumacher HA, Bourauel C, Drescher D (1991) Bogengeführte Zahnbewegung, Dynamik, Effektivität und Nebenwirkungen. Fortschr Kieferorthop 52:141–152

    Article  PubMed  Google Scholar 

  31. Schumacher HA, Bourauel C, Drescher D (1999) The influence of bracket design on frictional losses in the bracket/arch wire system. J Orofac Orthop 60:335–347

    Article  PubMed  Google Scholar 

  32. Shivapuja PK, Berger J (1994) A comparative study of conventional ligation and self-ligation bracket systems. Am J Orthod Dentofacial Orthop 106:472–480

    Article  PubMed  Google Scholar 

  33. Sukh R, Singh GK, Tandon P et al (2013) A comparative study of frictional resistance during simulated canine retraction on typodont model. J Orthod Sci 2:61–66

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tidy DC, Orth D (1989) Frictional force in fixed appliances. Am J Orthod Dentofac Orthop 96:249–254

    Article  Google Scholar 

Download references

Acknowledgments

We wish to thank ODS, Dentaline, and Dentaurum for generously providing materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Reimann.

Ethics declarations

Conflict of interest

A. Szczupakowski, S. Reimann, C. Dirk, L. Keilig, A. Weber, A. Jäger, and C. Bourauel state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szczupakowski, A., Reimann, S., Dirk, C. et al. Friction behavior of self-ligating and conventional brackets with different ligature systems. J Orofac Orthop 77, 287–295 (2016). https://doi.org/10.1007/s00056-016-0035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-016-0035-3

Keywords

Schlüsselwörter

Navigation