Skip to main content
Log in

Forces and moments delivered by PET-G aligners to an upper central incisor for labial and palatal translation

Kraft- und Drehmomentübertragung von Alignern aus PET-G bei labialen und palatinalen Bewegungen eines mittleren oberen Schneidezahnes

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objectives

Aligners made of polyethylene terephthalate glycol (PET-G) were tested in an experimental study for labial and palatal translation of an upper central incisor to quantify the forces and moments thus delivered and to biomechanically evaluate the capability of bodily movement.

Materials and methods

Using a resin model of the upper dentition, tooth 21 was separated and connected to a 3D force/moment (F/M) sensor to record the forces and moments delivered by aligners for labial and palatal displacement. An impression was taken with tooth 21 in its neutral position to obtain casts for standardized thermoplastic fabrication of aligners varying in make and foil thickness (Duran® 0.5/0.625/0.75 mm; Erkodur® 0.5/0.6/0.8 mm; Track-A® 0.5/0.63/0.8 mm). Upon placing each aligner over the teeth of the resin model, the separated tooth was subjected to 0.01 mm increments of labial and palatal translation by 0.25 mm in either direction.

Results

The mean forces delivered by the thinnest (0.5 mm) aligners for 0.25 mm of palatal displacement of tooth 21 were 3.01 ± 0.07 N (Duran®), 5.31 ± 0.89 N (Erkodur®), and 3.69 ± 0.81 N (Track-A®). The thickest (0.75 or 0.8 mm) aligners delivered 4.49 ± 0.16 N (Duran®), 7.22 ± 0.45 N (Erkodur®), and 5.20 ± 0.68 N (Track-A®). The mean forces for palatal as compared to labial displacement were higher by a mean of 48 % with the Erkodur® and by 23 % with the Track-A® aligners but were smaller by 37 % with the Duran® aligners. The moment-to-force (M/F) ratios, calculated in relation to the center of resistance of the separated measurement tooth, ranged from − 9.91 to − 12.22 mm, thus, approaching the value of − 8.80 mm for uncontrolled tipping of this tooth.

Conclusion

Manufacturers of PET-G aligners have recommended setup increments of 0.5–1 mm, which appears excessive based on our results. PET-G aligners not featuring modifications (e.g., reinforcing ribs or composite attachments bonded to the teeth) are unsuitable for bodily movement of upper central incisors in labial or palatal directions.

Zusammenfassung

Ziele

Ziele der vorliegenden Studie waren die Messung der von Alignern aus PET-G (Polyethylenterephthalat-Glycol) bei labialen bzw. palatinalen Bewegungen eines mittleren oberen Inzisivi ausgeübten Kräfte und Drehmomente und die biomechanische Evaluierung ihres Potenzials für körperliche Zahnbewegungen.

Material und Methode

Von einem OK(Oberkiefer)-Kunststoffmodell wurde Zahn 21 separiert und auf einen 3-D-Kraft-/Drehmoment(F/M)-Sensor an einer Positionierungseinheit montiert. In Neutralposition dieses Messzahnes wurde eine Abformung durchgeführt und auf entsprechenden Gipsmodellen standardisierte Aligner verschiedener Fabrikate und Dicken (Duran® 0.5/0.625/0.75 mm; Erkodur® 0.5/0.6/0.8 mm; Track-A® 0.5/0.63/0.8 mm) hergestellt. Bei applizierten Alignern erfolgten labiale und palatinale Translationen des Zahnes 21 im Ausmaß von mindestens 0,25 mm.

Ergebnisse

Die bei palatinaler Auslenkung des Messzahnes um 0,25 mm ermittelten Kräfte betrugen bei den Alignern mit 0,5 mm Ausgangsdicke 3,01 ± 0,07 N (Duran®, Scheu Dental), 5,31 ± 0,89 N (Erkodur®, Erkodent) bzw. 3,69 ± 0,81 N (Track-A®, Forestadent). Die entsprechenden Werte für die 0,75–bzw. 0,8–mm-Schienen betrugen 4,49 ± 0,16 N (Duran®), 7,22 ± 0,45 N (Erkodur®) bzw. 5,20 ± 0,68 N (Track-A®). Die bei Palatinalbewegung auftretenden Kraftwerte waren bei den Erkodur®- bzw. Track-A®-Schienen um durchschnittlich 48 bzw. 23 % größer als bei Labialbewegung, und bei den Duran®-Schienen waren sie um 37 % kleiner. Die bei Translation des Messzahnes berechneten Drehmoment-Kraft(M/F)-Ratios lagen, bezogen auf das Widerstandszentrum, zwischen − 9,91 und − 12,22 mm, was annähernd dem Wert für eine unkontrollierte Kippung dieses Zahnes entspricht.

Schlussfolgerungen

Die bisher von Herstellern empfohlenen Setupschritte für PET-G-Aligner von 0,5−1 mm erscheinen in Anbetracht dieser Ergebnisse zu groß. PET-G-Aligner ohne Versteifungen oder adhäsiv auf den Zahnkronen befestigte Komposit-Attachments sind für körperliche Bewegungen von mittleren OK-Inzisivi in labiopalatinaler Richtung ungeeignet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Barbagallo LJ, Jones AS, Petocz P et al (2008) Physical properties of root cementum: part 10. Comparison of the effects of invisible removable thermoplastic appliances with light and heavy orthodontic forces on premolar cementum. A microcomputed-tomography study. Am J Orthod Dentofacial Orthop 133:218–227

    Article  PubMed  Google Scholar 

  2. Barbagallo LJ, Shen G, Jones AS et al (2008) A novel pressure film approach for determining the force imparted by clear removable thermoplastic appliances. Ann Biomed Eng 36:335–341

    Article  PubMed  Google Scholar 

  3. Boyd RL, Miller RJ, Vlaskalic V (2000) The Invisalign system in adult orthodontics: mild crowding and space closure cases. J Clin Orthod 34:203–212

    Google Scholar 

  4. Brezniak N, Wasserstein A (2008) Root resorption following treatment with aligners. Angle Orthod 78:1119–1124

    Article  PubMed  Google Scholar 

  5. Crim GA, Swartz ML, Phillips RW (1985) Comparison of four thermocycling techniques. J Prosthet Dent 53:50–53

    Article  PubMed  Google Scholar 

  6. Dirk C, Drolshagen M, Hasan I et al (2013) In-vivo measurements and numerical analysis of the biomechanical characteristics of the human periodontal ligament. 19th Congress of the European Society of Biomechanics, Patras, Greece

  7. Fernandez Sanchez J, Pernia Ramirez I, Martin Alonso J (1998) Osamu active retainer for correction of mild relapse. J Clin Orthod 32:26–28

    Google Scholar 

  8. Fill TS, Carey JP, Toogood RW et al (2011) Experimentally determined mechanical properties of, and models for, the periodontal ligament: critical review of current literature. J Dent Biomech 2011:312980

    Article  PubMed Central  PubMed  Google Scholar 

  9. Fill TS, Toogood RW, Major PW et al (2012) Analytically determined mechanical properties of, and models for the periodontal ligament: critical review of literature. J Biomech 45:9–16

    Article  PubMed  Google Scholar 

  10. Geiger ME, Lapatki BG (2014) Locating the center of resistance in individual teeth via two- and three-dimensional radiographic data. J Orofac Orthop 75:96–106

    Article  PubMed  Google Scholar 

  11. Göz G (2000) Zahnbewegung. In: Diedrich P (Hrsg) Praxis der Zahnheilkunde. Kieferorthopädie II. Urban & Fischer, München, S 27–45

  12. Hahn W, Dathe H, Fialka-Fricke J et al (2009) Influence of thermoplastic appliance thickness on the magnitude of force delivered to a maxillary central incisor during tipping. Am J Orthod Dentofacial Orthop 136:12.e1–7 (discussion 12–13)

    Article  PubMed  Google Scholar 

  13. Hahn W, Engelke B, Jung K et al (2010) Initial forces and moments delivered by removable thermoplastic appliances during rotation of an upper central incisor. Angle Orthod 80:239–246

    Article  PubMed  Google Scholar 

  14. Hahn W, Engelke B, Jung K et al (2011) The influence of occlusal forces on force delivery properties of aligners during rotation of an upper central incisor. Angle Orthod 81:1057–1063

    Article  PubMed  Google Scholar 

  15. Hahn W, Fialka-Fricke J, Dathe H et al (2009) Initial forces generated by three types of thermoplastic appliances on an upper central incisor during tipping. Eur J Orthod 31:625–631

    Article  PubMed  Google Scholar 

  16. Hahn W, Zapf A, Dathe H et al (2010) Torquing an upper central incisor with aligners—acting forces and biomechanical principles. Eur J Orthod 32:607–613

    Article  PubMed  Google Scholar 

  17. Kesling H (1945) The philosophy of the tooth positioning appliance. Am J Orthod Oral Surg 31:297–304

    Article  Google Scholar 

  18. Kim T, Echarri P (2007) Clear aligner: an efficient, esthetic, and comfortable option for an adult patient. World J Orthod 8:13–18

    PubMed  Google Scholar 

  19. Kim T, Wilhelmy B, Gaugel H (o J) Clear-Aligner, An alternative orthodontic appliance. http://www.andersson-gaugel.de/pdf/SD_Clear-Aligner_klein.pdf. Zugegriffen: 20. Jan 2013

  20. Kim TW, Stückrad P (2010) Das Clear-Aigner-Konzept nach Dr.Kim. Kieferorthopädie Nachrichten 6:14–15

    Google Scholar 

  21. Kwon J, Lee Y, Lim B et al (2008) Force delivery properties of thermoplastic orthodontic materials. Am J Orthod Dentofacial Orthop 133:228–234 (quiz 328.e1)

    Article  PubMed  Google Scholar 

  22. Ponitz RJ (1971) Invisible retainers. Am J Orthod 59:266–272

    Article  PubMed  Google Scholar 

  23. Poppe M, Bourauel C, Jäger A (2002) Determination of the elasticity parameters of the human periodontal ligament and the location of the center of resistance of single-rooted teeth a study of autopsy specimens and their conversion into finite element models. J Orofac Orthop 63:358–370

    Article  PubMed  Google Scholar 

  24. Proffit WR (2007) Biological basis of orthodontic therapy. In: Proffit WR, Fields HW, Sarver DM (eds) Contemporary orthodontics. Mosby Elsevier, St. Louis, pp 331–358

  25. Reimann S, Frias Cortez M, Reichert C et al (2014) Numerische und biomechanische Analyse kieferorthopädischer Zahnbewegungen nach Parodontitistherapie unter Einsatz klinischer Daten. 87th Congress of the German Society of Orthodontics, Munich, Germany

  26. Ryokawa H, Miyazaki Y, Fujishima A et al (2006) The mechanical properties of dental thermoplastic materials in a simulated intraoral environment. Orthod Waves 65:64–72

    Article  Google Scholar 

  27. Sheridan JJ, LeDoux W, McMinn R (1993) Essix retainers: fabrication and supervision for permanent retention. J Clin Orthod 27:37–45

    PubMed  Google Scholar 

  28. Sheridan JJ, LeDoux W, McMinn R (1994) Essix appliances: minor tooth movement with divots and windows. J Clin Orthod:659–663

    Google Scholar 

  29. Simon M, Keilig L, Schwarze J et al (2014) Forces and moments generated by removable thermoplastic aligners: incisor torque, premolar derotation, and molar distalization. Am J Orthod Dentofacial Orthop 145:728–736

    Article  PubMed  Google Scholar 

  30. Tuncay OC (2006) The Invisalign system. Quintessence

  31. Vardimon AD, Robbins D, Brosh T (2010) In-vivo von Mises strains during Invisalign treatment. Am J Orthod Dentofacial Orthop 138:399–409

    Article  PubMed  Google Scholar 

  32. Yoshii O, Pohl M (1995) The Osamu-Retainer and its indications. Am J Orthod Dentofacial Orthop 107:457

    Google Scholar 

Download references

Compliance with ethical guidelines

Conflict of interest. Fayez Elkholy, Thanapon Panchaphongsaphak, Fatih Kilic, Falko Schmidt, and Bernd G. Lapatki state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Einhaltung ethischer Richtlinien

Interessenkonflikt. Fayez Elkholy, Thanapon Panchaphongsaphak, Fatih Kilic, Falko Schmidt und Bernd G. Lapatki geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Elkholy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elkholy, F., Panchaphongsaphak, T., Kilic, F. et al. Forces and moments delivered by PET-G aligners to an upper central incisor for labial and palatal translation. J Orofac Orthop 76, 460–475 (2015). https://doi.org/10.1007/s00056-015-0307-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-015-0307-3

Keywords

Schlüsselwörter

Navigation