Skip to main content
Log in

Identification of phenolic compounds from Zingiber offinale and their derivatives as histone deacetylase inhibitors and antioxidants

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The aim of this study was to explore histone deacetylase inhibitory and antioxidant activities of natural products from ginger and their semi-synthetic derivatives. Two major phenolic compounds, [6]-gingerol and [6]-shogaol along with three minor phenolic compounds including [6]-gingerdione, 1-dehydro-[6]-gingerdione and [6]-gingerdiol were isolated and tested against histone deacetylase in HeLa nuclear extract. All compounds exhibited histone deacetylase inhibitory activities in micromolar concentrations. 1-dehydro-[6]-gingerdione showed the best inhibition with IC50 value of 42 μM. Thirteen semi-synthetic derivatives of two major natural products were synthesized and tested. The demethylated [6]-shogaol derivative was the best inhibitor among the synthesized compounds with IC50 value of 45 μM. Molecular docking experiments of selected compounds with representatives of class I and class II histone deacetylase isoforms revealed potential isoform-selective histone deacetylase inhibitors. The DPPH assay indicated that most derivatives possessed antioxidant activities superior to their lead compounds. Therefore, the studied compounds could serve as promising leads for safe and selective anticancer agents with histone deacetylase inhibitory and radical scavenging abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali BH, Blunden G, Tanira MO, Nemmar A (2008) Some phytochemical, pharmacological and Toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem Toxicol 46:409–420

    Article  CAS  PubMed  Google Scholar 

  • Banno K, Mukaiyama T (1976) A new synthesis of the pungent principles of ginger-zingerone, gingerols and shogaols. Bull Chem Soc Jpn 49:1453–1454

    Article  CAS  Google Scholar 

  • Bartling B, Hofmann HS, Boettger T, Hansen G, Burdach S, Silber RE, Simm A (2005) Comparative application of antibody and gene array for expression profiling in human squamous cell lung carcinoma. Lung Cancer 49:145–154

    Article  PubMed  Google Scholar 

  • Bertrand P (2010) Inside HDAC with HDAC inhibitors. Eur J Med Chem 45:2095–2116

    Article  CAS  PubMed  Google Scholar 

  • Bieliauskas AV, Weerasinghe SV, Pflum MK (2007) Structural requirements of HDAC inhibitors: SAHA analogs functionalized adjacent to hydroxamic acid. Bioorg Med Chem Lett 17:2216–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottomley MJ, Surdo PL, Giovine PD, Cirillo A, Scarpelli R, Ferrigno F, Jones P, Neddermann P, Francesco RD, Steinkühler C, Gallinari P, Carfi A (2008) Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J Biol Chem 283:26694–26704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charles R, Garg SN, Kumar S (2000) New gingerdione from the rhizomes of Zingiber officinale. Fitoterapia 71:716–718

    Article  CAS  PubMed  Google Scholar 

  • Chrubasik S, Pittler M, Roufogalis B (2005) Zingiberis rhizoma: a comprehensive review on the ginger effect and efficacy profiles. Phytomedicine 12:684–701

    Article  CAS  PubMed  Google Scholar 

  • De Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): Characterization of the classical HDAC family. Biochem J 370:737–749

    Article  PubMed  PubMed Central  Google Scholar 

  • Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandar S, Korlakunta JN (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 127:515–520

    Article  CAS  PubMed  Google Scholar 

  • Erden DD, Bora G, Ayhan P, Kocaefe C, Dalkara S, Yelekci K, Demir AS, Yurter HE (2009) Histone deacetylase inhibition activity and molecular docking of (E)-resveratrol: its therapeutic potential in spinal muscular atrophy. Chem Biol Drug Des 73:355–364

    Article  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow R, Pavletich NP (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–196

    Article  CAS  PubMed  Google Scholar 

  • Gopalan B, Ponpandian T, Kachhadia V, Bharathimohan K, Vignesh R, Sivasudar V, Narayanan S, Mandar B, Praveen R, Saranya N, Rajagopal S, Rajagopal S (2013) Discovery of adamantane based highly potent HDAC inhibitors. Bioorg Med Chem Lett 23:2532–2537

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK (2008) Ginger-a wonderful spice: an overview. Vegetos 21:1–10

    Google Scholar 

  • Hahnen E, Hauke J, Trankle C, Eyupoglu IY, Wirth B, Blumcke I (2008) Histone deacetylase inhibitors: possible implications for neurodegenerative disorders. Expert Opin Invest Drugs 17:169–184

    Article  CAS  Google Scholar 

  • Hung JY, Hsu YL, Li CT, Ko YC, Ni WC, Huang MS, Kuo PL (2009) [6]-Shogaol, an active constituent of dietary ginger, induces autophagy by inhibiting the AKT/mTOR pathway in human non-smallcell lung cancer A549 cells. J Agric Food Chem 57:9809–9816

    Article  CAS  PubMed  Google Scholar 

  • Khabele D, Son DS, Parl AK, Goldberg GL, Augenlicht LH, Mariadason JM, Rice VM (2007) Drug-induced inactivation or gene silencing of class I histone deacetylase suppresses ovarian cancer cell growth: Implication for therapy. Cancer Biol Ther 6:795–801

    Article  CAS  PubMed  Google Scholar 

  • Kikuzaki H, Tsai SM, Nakatani N (1992) Gingerdiol related compounds from the rhizomes of Zingiber officinale. Phytochemistry 31:1783–1786

    Article  CAS  Google Scholar 

  • Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG (2007) Focus on acetylation: the role of histone deacetylase inhibitors in cancer therapy and beyond. Expert Opin Invest Drugs 16:569–571

    Article  CAS  Google Scholar 

  • Kouzarides T (1999) Histone acetylases and deacetylases in cell proliferation. Curr Opin Genet Dev 9:40–48

    Article  CAS  PubMed  Google Scholar 

  • Kumar NV, Murthy PS, Manjunatha JR, Bettadaiah BK (2014) Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives. Food Chem 159:451–457

    Article  PubMed  Google Scholar 

  • Lauffer BEL, Mintzer R, Fong R, Mukund S, Tam C, Zilberleyb I, Flicke B, Ritscher A, Fedorawicz G, Vallero R, Ortwine DF, Gunzner J, Modrusan Z, Neumann L, Koth CM, Lupardus PL, Kaminker JS, Heise CE, Steiner P (2013) Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J Biol Chem 288:26926–26943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Seo EY, Kang NE, Kim WK (2008) [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J Nutr Biochem 19:313–319

    Article  CAS  PubMed  Google Scholar 

  • Manal M, Chandrasekar MJN, Priya JG, Nanjan MJ (2016) Inhibitors of histone deacetylase as antitumor agents: A critical review. Bioorg Chem 67:18–42

    Article  CAS  PubMed  Google Scholar 

  • Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: Vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252

    Article  CAS  PubMed  Google Scholar 

  • Micelli C, Rastelli G (2015) Histone deacetylase: structural determinants of inhibitor selectivity. Drug Disc Today 20:718–735

  • Miller TA, Witter DJ, Belvedere S (2003) Histone deacetylase inhibitors. J Med Chem 46:5097–5116

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigam N, Bhui K, Prasad S, George J, Shukla Y (2009) [6]-Gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells. Chem Biol Interact 181:77–84

    Article  CAS  PubMed  Google Scholar 

  • Noureen N, Rashid H, Kalsoon S (2012) An efficient anticancer histone deacetylase inhibitor and its analogues for human HDAC8. Med Chem Res 21:568–577

    Article  CAS  Google Scholar 

  • Ontoria JM, Altamura S, Marco AD, Ferrigno F, Laufer R, Muraglia E, Palumbi MC, Rowley M, Scarpelli R, Fademrecht CS, Serafini S, Steinkühler C, Jones P (2009) Identification of novel, selective, and stable inhibitors of class II histone deacetylases. Validation studies of the inhibition of the enzymatic activity of HDAC4 by small molecules as a novel approach of cancer therapy. J Med Chem 52:6782–6789

    Article  CAS  PubMed  Google Scholar 

  • Özyürek M, Akpınar D, Bener M, Türkkan B, Güçlü K, Apak R (2014) Noveloximebased flavanone, naringin-oxime: synthesis, characterization and screening for antioxidant activity. Chem Biol Interact 177:153–160

    Google Scholar 

  • Paris M, Porcelloni M, Binaschi M, Fattori D (2008) Histone deacetylase inhibitors: From bench to clinic. J Med Chem 51:1505–1529

    Article  CAS  PubMed  Google Scholar 

  • Peng F, Tao Q, Wu X, Dou H, Spencer S, Mang C, Xu L, Sun L, Zhao Y, Li H, Zeng S, Liu G, Hao X (2012) Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger. Fitoterapia 83:568–585

    Article  CAS  PubMed  Google Scholar 

  • Puntel GO, Carvalho NR, Gubert P, Palma AS, Corte CLD, Ávila DS, Pereira ME, Carratu VS, Bresolin L, Rocha JBT, Soares FAA (2009) Butane-2,3-dionethiosemicarbazone: an oxime with antioxidant properties. Chem Biol Interact 177:153–160

    Article  CAS  PubMed  Google Scholar 

  • Ravichandiran P, Jegan A, Premnath D, Periasamy VS, Vasanthkumar S (2015) Design, synthesis, molecular docking as histone deacetylase (HDAC8) inhibitors, cytotoxicity and antibacterial evaluation of novel 6-(4-(4-aminophenylsulfonyl)phenylamino)-5H- Benzo[a]phenoxazin-5-one derivatives. Med Chem Res 24:197–208

    Article  CAS  Google Scholar 

  • Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    Article  CAS  PubMed  Google Scholar 

  • Sanner MF (1999) Python: A programming language for software integration and development. J Mol Graphics Mod 17:57–61

    CAS  Google Scholar 

  • Schuetz A, Min J, Hassani AA, Schapira M, Shuen M, Loppnau P, Mazitschek R, Kwiatkowski NP, Lewis TA, Maglathin RL, McLean TH, Bochkarev A, Plotnikov AN, Vedadi M, Arrowsmith CH (2008) Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J Biol Chem 283:11355–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senawong T, Misuna S, Khaopha S, Nuchadomrong S, Sawatsitang P, Phaosiri C, Surapaitoon A, Sripa B (2013) Histone deacetylase (HDAC) inhibitory and antiproliferative activities of phenolic-rich extracts derived from the rhizome of Hydnophytum formicarum Jack.: sinapinic acid acts as HDAC inhibitor. BMC Complement Altern Med 13:232–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Senawong T, Wongphakham P, Saiwichai T, Phaosiri C, Kumboonma P (2015) Histone deacetylase inhibitory activity of hydroxycapsaicin, a synthetic derivative of capsaicin, and its cytotoxic effects against human colon cancer cell lines. Turk J Biol 39:1–10

    Article  Google Scholar 

  • Shukla Y, Singh M (2007) Cancer preventive properties of ginger: a brief review. Food Chem Toxicol 45:683–690

    Article  CAS  PubMed  Google Scholar 

  • Silverstein RM, Bassler GC, Morrill TC (1991) 13C NMR spectrometry. In: Sawicki D (ed) Spectrometric identification of organic compounds. Wiley, New York, p 227–250

    Google Scholar 

  • Song J, Noh JH, Lee JH, Eun JW, Ahn YM, Kim SY, Lee SH, Park WS, Yoo NJ, Lee JY, Nam SW (2005) Increased expression of histone deacetylase is found inhuman gastric cancer. APMIS 113:264–268

    Article  CAS  PubMed  Google Scholar 

  • Sun LP, Chen AL, Hung HC, Chien YH, Huang JS, Huang CY, Chen YW, Chen CN (2012) Chrysin: a histone deacetylase 8 inhibitorwith anticancer activity and a suitable candidate for the standardization of Chinese propolis. J Agric Food Chem 2012:11748–11758

    Article  Google Scholar 

  • Suzuki T, Miyata N (2005) Non-hydroxamate histone deacetylase inhibitors. Curr Med Chem 12:2867–2880

    Article  CAS  PubMed  Google Scholar 

  • Tatar GB, Erden DD, Demir AS, Dalkara S, Yelekci K, Yurter HE (2009) Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: activity and docking studies. Bioorg Med Chem 17:5219–5228

    Article  Google Scholar 

  • Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF (2003) Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 983:84–100

    Article  CAS  PubMed  Google Scholar 

  • Vannini A, Volpari C, Filocamo G, Casavola EC, Brunetti M, Renzoni D, Chakravarty P, Paolini C, Francesco RD, Gallinari P, Steinkuhler C, Marco SD (2004) Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA 101:15064–15069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang TC, Chen IL, Lu PJ, Wong CH, Liao CH, Tsiao KC, Chang KM, Chen YL, Tzeng CC (2005) Synthesis, antiproliferative, and antiplatelet activities of oxime- and methyloxime-containing flavone and isoflavone derivatives. Bioorg Med Chem 13:6045–6053

    Article  CAS  PubMed  Google Scholar 

  • Weichert W (2009) HDAC expression and clinical prognosis inhuman malignancies. Cancer Lett 280:168–176

    Article  CAS  PubMed  Google Scholar 

  • Weinmann H, Ottow E (2005) Histone deacetylase inhibitors: a survey of recent patents. Expert Opin Ther Pat 15:1677–1690

    Article  CAS  Google Scholar 

  • Yoshida M, Kijima M, Akita M, Beppu T (1990) Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by Trichostatin A. J Biol Chem 265:17174–17179

    CAS  PubMed  Google Scholar 

  • Zhang L, Minyong L, Jinhong F, Hao F, Wenfang X (2012) Discovery of a novel histone deacetylase 8 inhibitor. Med Chem Res 21:152–156

    Article  CAS  Google Scholar 

  • Zuo L, Yao S, Wang W, Duan W (2008) An efficient method for demethylation of aryl methyl ethers. Tetrahedron Lett 49:4054–4056

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Khon Kaen University is gratefully acknowledged for the financial supports of this work (Grant Numbers 580403 and 592304). We also would like to thank Mr. Kittisak Poopasith for the excellent NMR data. A graduate fellowship given to Pakit Kumboonma is supported by Rajamangala University of Technology Isan (RMUTI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanokbhorn Phaosiri.

Ethics declarations

Competing financial interests

The authors declare no competing financial interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumboonma, P., Senawong, T., Saenglee, S. et al. Identification of phenolic compounds from Zingiber offinale and their derivatives as histone deacetylase inhibitors and antioxidants. Med Chem Res 26, 650–661 (2017). https://doi.org/10.1007/s00044-017-1785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-1785-1

Keywords

Navigation