Skip to main content
Log in

Schiff base pyrazolone complexes of iron (III): synthesis, characterization, antimicrobial and antioxidant activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of novel Schiff base tetradentate ligands and its iron (III) coordination compounds were synthesized, characterized and evaluated for antibacterial and antioxidant activity. All the synthesized ligands and complexes were characterized by spectroscopic and crystallographic techniques. Electronic spectra, Mössbauer spectra, magnetic moment and conductance study evidence the fact of octahedral arrangement around iron (III). The in vitro antimicrobial Schiff base complexes bear polar and nonpolar properties together; this makes them suitable for permeation to the cells and tissues, it enhances the activity against the bacteria. The antioxidant properties were measured with DPPH (2,2’-diphenyl-2-picrylhydrazyl). These properties were due to the unique feature of ligands such as highest lipophilicity, lowest electron withdrawing power and highest polarisability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Abdullin IF, Turova EN, Budnikov GK (2001) Reducing antioxidant capacity evaluated by means of a controlled potential oxidative attack. J Anal Chem 56:557

    Article  CAS  Google Scholar 

  • Ali MA, Mirza AH, Butcher RJ, Tarafder MTH, Keat TB, Ali AM (2002) Bis[benzyl N′-(3-phenylprop-2-enylidene)hydrazinecarbodithioato-κ2N′,S]zinc(II). J Inorg.Biochem 92:141

    Article  PubMed  Google Scholar 

  • Andrews NC (1999) Disorders of iron metabolism. New Engl J Med 341:1986

    Article  CAS  PubMed  Google Scholar 

  • Azaroff LG, Buerger MJ (1958) The powder method in X-ray crystallography. McGraw- Hill Book Company, New York

    Google Scholar 

  • Aziz MA, El-Din G, Rahma AA, Hassan AA (2009) Synthesis characterization and antimicrobial activity of some new N’ Substututed-pyrazol-4-carbaldehyde bearing 2,4-dichloro phenyl moiety. Eur J Med Chem 44:3480

    Article  PubMed  Google Scholar 

  • Bailar JC, Emeleus H, Nyholm JR, Dickenson AFT (1975) Comprehensive Inorganic Chemistry. Pergamon Press, New York, p 517

    Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power” the FRAP assay. Anal Biochem 70:239

    Google Scholar 

  • Bell JT (1969) Continuities in spectra and structure of actinyl ions. J Inorg Nucl Chem 31:703

    Article  CAS  Google Scholar 

  • Botta M, De-Logu A, Radi M, Bechi B, Manetti F, Magnani M, Supino S, Meleddu R, Chisu L, Castagnolo D (2008) Synthesis, biological evaluation and SAR study of novel pyrazole analouges as inhibitor of mycobacterium tuberculosis. Bioorgan Med Chem 16:8587–8591

    Article  Google Scholar 

  • Broseta SM (2001) Review of epidemiological surveys on the prevalence of contamination of healthy cattle with Escherichia coli Serogroup 0157: H7. Int Hug Environ Health 203:347–361

    Article  Google Scholar 

  • Camacho C, Oviedo IR, Ortiz AG, Cardenas J, Toscano E, Gavino R (2013) Synthesis, structural characterization and in vitro cytotoxic activity of novel polymeric triorganotin (IV) complexes of urocanic acid. J Med Chem 27:45–51

    Google Scholar 

  • Casas JS, Castellano EE, Ellena J, Garcıa-Tasende MS, Luz Perez-Paralle M, Sanchez A, Gonzalez AS, Sordo J, Touceda A (2008) New Pd(II) and Pt(II) complexes with N,S-chelated pyrazolonate ligands: molecular and supramolecular structure and preliminary study of their in vitro antitumoral activity. J Inorg Biochem 102:33

    Article  CAS  PubMed  Google Scholar 

  • Costa D, Marques AP, Reis RL, Lima JLFC, Fernandes E (2006) Efficient di-bromination of 5-pyrazolones and 5-hydroxypyrazoles by N-bromobenzamide. Free Radical Bio & Med 40:632

    Article  CAS  Google Scholar 

  • David JW, Straley JM (1961) Synthesis of 5-oxo-2-pyrazolin-4-carboxaldehyde. J Org Chem 3825

  • Dwyer FP, Mellor DP (1962) Chelating agent and metal chelates. Academic Press, New York

    Google Scholar 

  • El-Tabl HM, Fathy El-S A (2005) Synthesis, Magnetic and Spectral Studies of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Uranyl Complexes of N-(2-pyrdylidene)-Benzothiazole-2-Ylacetohydrazone. Synth React Inorg Met-Org Chem 35:245

  • Figgis BN, Lewis J (1960) Modern coordination chemistry. Wiley Interscience, New York

    Google Scholar 

  • Furman NH (1962) Standard methods of chemical analysis. 6th edn. vol. 1, Van Nostrand, New York

    Google Scholar 

  • Geary WJ (1971) The use of conductivity measurements in organic solvents for the characterization of coordination compounds. Coord Chem Rev 7:81

    Article  CAS  Google Scholar 

  • George S, Tachil KK, Parmeswaran S, Kochupappy RT (2014) Synthesis of some benzoxazinyl pyrazolone arylidenes as a potent antimicrobial and antioxidants. J Med Chem 3:1320–1326

    Google Scholar 

  • Gibb TC (1976) Principles of Mössbauer spectroscopy. Chapman & Hall, London

    Book  Google Scholar 

  • Gordon A, Ford R, Khimika S (1978) A handbook of practical data, techniques and references. John Wiley and Sons, Moscow, Russia

    Google Scholar 

  • Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy. Chapman & Hall, London

    Book  Google Scholar 

  • Heijnen CGM, Haenen GRMM, Van Acker FAA, Van der Vijgh WJF, Bast A (2001) Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol In Vitro 15:3–6

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Yu Y, Gao Z, Zhang Y, Li C, Xu X, Jin H, Yan W, Ma R, Zhu J, Shen X, Jiang H, Chen L, Li J (2012) Structure-based design of novel inhibitors of the MDM2-p53 interaction. J Med Chem 55:7037

    Article  CAS  PubMed  Google Scholar 

  • Jadeja RN, Shah JR, Suresh E, Paul P (2004) Synthesis and crystal structure of a series of pyrazolone based Schiff base and DNA binding sites of their copper complexes. Polyhedron 23:2465

    Article  CAS  Google Scholar 

  • Johnstone RAW (1972) Mass spectrometry for organic chemists. Cambridge University Press, London

    Google Scholar 

  • Kimata A, Nakagawa H, Ohyama R, Fukuuchi T, Ohta S, Suzuki T, Miyata N (2007) New series of antiprion compounds : pyrazolone derivatives have the potent activity of inhibiting protease-resistant prion protein accumulation. J Med Chem 50:5053

    Article  CAS  PubMed  Google Scholar 

  • Kalluraya B, Shetty S, Nitinchandra, Peethamber SK, Telker SB (2014) Type II diabetes related enzyme inhibition and molecular modeling study of novel series of pyrazolone derivatives. J Med Chem 23:2834–2846

    Google Scholar 

  • Lever ABP (1968) Inorganic electronic spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  • Liu ZD, Hider RC (2002) Binding metals: tailoring multifunctional chelating agents for neurodegenerative diseases. Coord Chem Reviews 232:151

    Article  CAS  Google Scholar 

  • Long GJ (1984) Mössbauer Spectroscopy Applied to Inorganic Chemistry. Plenum, New York

    Book  Google Scholar 

  • Manojkumar P, Ravi TK, Gopalakrishnan S (2009) Antioxidant and antibacterial studies of arylazopyrazoles and arylhydrazonopyrazolones containing coumarin moiety. Eur J Med Chem 44:4690

    Article  CAS  PubMed  Google Scholar 

  • Mclafferty FW (1973) Interpretation of mass spectra. 2nd edn. The Benjamin/Cummings publishing company, Canada

    Google Scholar 

  • Nakagawa H, Ohyama R, Kimata A, Suzuki T, Miyata N (2006) Hydroxyl radical scavenging by edaravone derivatives: efficient scavenging by 3-methyl-1-(pyridin-2-yl)-5-pyrazolone with an intramolecular base. Bioorg Med Chem Lett 16:5939

    Article  CAS  PubMed  Google Scholar 

  • Nakamoto K (1978) Infrared and Raman spectra of inorganic and coordination compounds. 3rd edn. John Wiley and sons, New York

    Google Scholar 

  • Perrin DD, Armarego W, Perrin DR (1980) Purification of Laboratory Chemicals. 2nd edn. Pergamon Press, New York

    Google Scholar 

  • Raj DS, Shah PC, Shah JR (1992) Synthesis of chromium(III) chelates of some newly synthesized heterocyclic teiradentate schiff bases. Synth React Inorg Met-Org Chem 22(3):321

    Article  CAS  Google Scholar 

  • Rehder D (2003) Synthesis and characterization of oxovanadium (IV) macrocyclic complexes with ligands derived by condensation of furil with 1,4-diaminobenzene or 3,4-diaminopyridine and their reactions with β-diketones. Inorg Chem Commun 6(5):604

    Article  CAS  Google Scholar 

  • Ruf S, Buning C, Schreuder H, Horstick G, Linz W, Olpp T, Pernerstorfer J, Hiss K, Kroll K, Kannt A, Kohlmann M, Linz D, Hϋbschle T, Rϋtten H, Wirth K, Schmidt T, Sadowski T (2012) Novel β‑amino acid derivatives as inhibitors of cathepsin. A J Med Chem 55:7636

    Article  CAS  PubMed  Google Scholar 

  • Sabry SM (2006) Application of 2-acetylbutyrolactone to spectrofluorimetry: fluorescence properties of Schiff bases derived from 2-acetylbutyrolactone and spectrofluorimetric determination of primary amine-containing compounds. J Pharm Biomed 40:1057

    Article  CAS  Google Scholar 

  • Silverstein RM, Bassler GC, Morrill TC (1991) Spectrometric identification of organic compounds. 5th edn. Wiley, New York

    Google Scholar 

  • Singh NK, Kushawaha SK (2001) Complexes of N-phenyl-N-2-furathiocorbahydrazide with oxovanadium (IV), manganese (III), iron (III), cobalt (II), nickel (II), copper (II) and zinc (II). Transition Met Chem 26:140

    Article  CAS  Google Scholar 

  • Sakıyan I, Logoglu E, Arslan S, Sari N, Sakıyan N (2004) Antimicrobial activities of N-(2-hydroxy-1-naphthalidene)-amino acid(glycine, alanine, phenylalanine, histidine, tryptophane) Schiff bases and their manganese (III) complexes. BioMetals 17:115

    Article  PubMed  Google Scholar 

  • Sonnenborn U, Schulze J (2009) The nonpathogenic Escherichia coli strain Nissle 1917 feature of a versatile probiotic. Microb Ecol Health Dis 21:122–158

    Article  CAS  Google Scholar 

  • Surati KR (2011) Synthesis, spectroscopy and biological investigation of manganese (III)Schiff base complexes derived from heterocyclic β diketone with various primary amine and 2,2’-bipyridyl. Spectrochim Acta Part A 79:272

    Article  CAS  Google Scholar 

  • Surati KR, Thaker BT (2006) Spectroscopic and ab-initio study of Schiff base ligand 4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2-p-tolyl-2,4-dihydro-pyrazol-3-one. J Coord Chem 59(11):1191

    Article  CAS  Google Scholar 

  • Surati KR, Tanker BT (2010) Synthesis, spectral, crystallography and thermal investigations of novel Schiff base complexes of manganese (III) derived from heterocyclic – diketone with aromatic and aliphatic diamine. Spectrochim Acta Part A 75:235

    Article  Google Scholar 

  • Surati KR, Thaker BT, Modi CK (2008) Synthesis, spectral, thermal, and antibacterial investigation of mixed ligand complexes of oxovanadium (IV). Russ J Coord Chem 34:25

    Article  Google Scholar 

  • Surati KR, Thaker BT, Shah GR (2008) Synthesis, Spectroscopic and Thermal Investigations of O-Phd and P-Phd Bridged Binuclear Manganese (III) Schiff Base Complexes Derived from Pyrazolone Base Ligands. Synth React Inorg Met-Org Chem 38:272

  • Thaker BT, Surati KR, Oswal SL, Jadeja RN, Gupta VK (2007) Synthesis, spectroscopy and biological investigations of manganese(III) Schiff base complexes derived from heterocyclic β-diketone with various primary amine and 2,2′-bipyridyl. Struct Chem 18:295

    Article  CAS  Google Scholar 

  • Uramaru N, Shigematsu H, Toda A, Eyanagi R, Kitamura S, Ohta S (2010) An easy direct arylation of 5-pyrazolones. J Med Chem 53:8727

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg R, Haenen GRMM, van den Berg H, van der Vijgh W, Bast A (2000) Measurement of antioxidant activity of wine catechins, procyanidins, anthocyanins and pyranoanthocyanins. Food Chem 467:145–153

    Google Scholar 

  • Varvounis G, Fiamegos Y, Pilidis G (2001) Efficient synthesis of 1,2-bis(alkoxycarbonyl)pyrazol-3-ones from 2,3-allenoic acids, azodicarboxylates and PPh3. Adv Heterocycl Chem 80:73

    Article  Google Scholar 

  • Vieirera A, Antunus AM, Noronha J, Fernandes E, Santos PMP (2010) Scavenging activity of aminoantipyrines against hydroxyl radicals. Eur J Med Chem 45:2258

    Article  Google Scholar 

  • Vyas KM, Jadeja RN, Gupta VK, Surati KR (2011) Synthesis and crystal structure of a series of pyrazolone based Schiff base ligands and DNA binding studies of their copper complexes. J Mol Struct 990–110

  • Wang XH, Jia DZ, Liang YJ, Yan SL, Ding Y, Chen LM, Shi Z, Zeng MS, Liu GF, Fu LW (2007) Lgf-YL-9 induces apoptosis in human epidermoid carcinoma KB cells and multidrug resistant KBv200 cells via reactive oxygen species-independent mitochondrial pathway. Cancer Lett 256-249

  • Qi X, Ready JM (2007) Copper-Promoted Cycloaddition of Diazocarbonyl Compounds and Acetylides. Angew Chem Int Ed. 46: 3242 (References concerning biological activity of pyrazoles, see: Supporting Information)

  • Yang ZY (2002) Synthesis, characterization and DNA-binding properties of three 3D transition metal complexes of the schiff base derived from diethenetriamine with PMBP. Synth React Inorg Met-Org Chem 32(5):903

    Article  CAS  Google Scholar 

  • Yang ZY, Yang RD, Shen F, Yu KB (2001) Crystal structure and antitumor activity of some rare metal earth complexes with Schiff base. Polyhedron 19:2599

    Article  Google Scholar 

  • Youseef MSK, Abbady MS (2014) Synthesis and biological activity of some new pyridines, pyrans and indazole containing pyrazolones moiety. Med Chem Res 23:3558–3568

    Article  Google Scholar 

  • Zitouni GT, Sivaci M, Kilic FS, Erol K (2001) Synthesis of some triazolyl-antipyrine derivatives and investigation of analgesic activity. Eur J Med Chem 36:685–689

    Article  Google Scholar 

Download references

Acknowledgments

The author expresses their sincere thanks to University Grant Commission (UGC), New Delhi (Ref. No. F. 41-296/2012 (SR) for providing financial support under major research project. The author is also thankful to the Head, Department of Chemistry, Sardar Patel University, CDRI, Lucknow and SAIF, IIT Madras for providing instrumental facility. Pooja A. Sathe express her sincere thanks to UGC for JRF F.17-120/98(SA-I) No.F.15-9(JUNE-2012)/2012(NET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran R. Surati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surati, K.R., Sathe, P.A. Schiff base pyrazolone complexes of iron (III): synthesis, characterization, antimicrobial and antioxidant activity. Med Chem Res 25, 2742–2751 (2016). https://doi.org/10.1007/s00044-016-1649-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1649-0

Keywords

Navigation