Skip to main content
Log in

Protective effect of 5-hydroxy-3′,4′,7-trimethoxyflavone against inflammation induced by lipopolysaccharide in RAW 264.7 macrophage: in vitro study and in silico validation

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The herb Lippia nodiflora L. (Verbenaceae) has been documented to exhibit anti-inflammatory, antipyretic, antitussive, antidiabetic, anticancer, and antimelanogenesis properties. In the present study, we aimed at evaluating the anti-inflammatory activity of 5-hydroxy-3′,4′,7-trimethoxyflavone, a flavonoid from L. nodiflora, using lipopolysaccharide induced inflammation in RAW 264.7 macrophages. 5-hydroxy-3′,4′,7-trimethoxyflavone significantly inhibited nitric oxide production and demonstrated slight reduction in prostaglandin-E2 level at tested concentrations. The production of pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, were obviously reduced by 5-hydroxy-3′,4′,7-trimethoxyflavone in a concentration-dependent manner. Moreover, 5-hydroxy-3′,4′,7-trimethoxyflavone significantly induced reduction in the mRNA expressions of inducible nitric oxide synthase and cyclooxygenase-2, representing that inhibition occurs at the transcriptional level. In addition, we performed molecular docking and molecular dynamic simulations to study the interaction of 5-hydroxy-3′,4′,7-trimethoxyflavone with inflammatory mediators such as inducible nitric oxide synthase and cyclooxygenase-2. Docking study showed its hydrogen bond interactions with key residues in the active site of inducible nitric oxide synthase and cyclooxygenase-2, enlightening its possible binding mode at the molecular level. The results of molecular dynamic simulations showed the stability of complexes and their interactions. Taken together, these findings envisage 5-hydroxy-3′,4′,7-trimethoxyflavone as a potential candidate molecule for the progress of therapeutic strategy against inflammation-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelwahab SI, Koko WS, Taha MME, Mohan S, Achoui M, Abdulla MA, Mustafa MR, Ahmad S, Noordin MI, Yong CL, Sulaiman MR, Othman R, Hassan AA (2012) In vitro and in vivo anti-inflammatory activities of columbin through the inhibition of cycloxygenase-2 and nitric oxide but not the suppression of NF-κB translocation. Eur J Pharmacol 678:61–70

    Article  CAS  Google Scholar 

  • Ashley NT, Weil ZM, Nelson RJ (2012) Inflammation: mechanisms, costs, and natural variation. Annu Rev Ecol Evol Syst 43:385–406

    Article  Google Scholar 

  • Ayissi Owona B, Njayou NF, Laufer S, Moundipa PF, Schluesener HJ (2013) A fraction of stem bark extract of Entada africana suppresses lipopolysaccharide-induced inflammation in RAW 264.7 cells. J Ethnopharmacol 149:162–168

    Article  PubMed  Google Scholar 

  • Balakrishnan G, Janakarajan L, Balakrishnan A, Lakshmi BS (2010) Molecular basis of the anti-inflammatory property exhibited by cyclo-pentanophenanthrenol isolated from Lippia nodiflora. Immunol Invest 39:713–739

    Article  CAS  PubMed  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  CAS  PubMed  Google Scholar 

  • Celej MS, Montich CG, Fidelio GD (2003) Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci 12:1496–1506

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatterjee N, Das S, Bose D, Banerjee S, Das S, Chattopadhyay D, Saha KD (2012) Exploring the anti-inflammatory activity of a novel 2-phenylquinazoline analog with protection against inflammatory injury. Toxicol Appl Pharmacol 264:182–191

    Article  CAS  PubMed  Google Scholar 

  • Cheshire DR, Aberg A, Andersson GM, Andrews G, Beaton HG, Birkinshaw TN, Boughton-Smith N, Connolly S, Cook TR, Cooper A, Cooper SL, Cox D, Dixon J, Gensmantel N, Hamley PJ, Harrison R, Hartopp P, Kack H, Leeson PD, Luker T, Mete A, Millichip I, Nicholls DJ, Pimm AD, St-Gallay SA, Wallace AV (2011) The discovery of novel, potent and highly selective inhibitors of inducible nitric oxide synthase (iNOS). Bioorg Med Chem Lett 21:2468–2471

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885–891

    Article  CAS  PubMed  Google Scholar 

  • Comalada M, Ballester I, Bailon E, Sierra S, Xaus J, Galvez J, de Medina FS, Zarzuelo A (2006) Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: analysis of the structure-activity relationship. Biochem Pharmacol 72:1010–1021

    Article  CAS  PubMed  Google Scholar 

  • Crouvezier S, Powell B, Keir D, Yaqoob P (2001) The effects of phenolic components of tea on the production of pro- and anti-inflammatory cytokines by human leukocytes in vitro. Cytokine 13:280–286

    Article  CAS  PubMed  Google Scholar 

  • Desmond Molecular Dynamics System (2014) Version 3.8. D. E. Shaw Research, New York

  • Dilber SP, Dobric SL, Juranic ZD, Markovic BD, Vladimirov SM, Juranic IO (2008) Docking studies and anti-inflammatory activity of beta-hydroxy-betaarylpropanoic acids. Molecules 18:603–615

    Article  Google Scholar 

  • Duffield JS (2003) The inflammatory macrophage: a story of Jekyll and Hyde. Clin Sci (Lond) 104:27–38

    Article  CAS  Google Scholar 

  • Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121:2381–2386

    Article  CAS  PubMed  Google Scholar 

  • Fischer LG, Horstman DJ, Hahnenkamp K, Kechner NE, Rich GF (1999) Selective iNOS inhibition attenuates acetylcholine- and bradykinin-induced vasoconstriction in lipopolysaccharide-exposed rat lungs. Anesthesiology 91:1724–1732

    Article  CAS  PubMed  Google Scholar 

  • Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shaw DE, Shelley M, Perry JK, Francis P, Shenkin PS (2004) Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive regulators of immunity. Nat Rev Immunol 8:478–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Lafuente A, Guillamon E, Villares A, Rostagno MA, Martinez JA (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 58:537–552

    Article  CAS  PubMed  Google Scholar 

  • Gautam R, Jachak SM (2009) Recent developments in anti-inflammatory natural products. Med Res Rev 29:767–820

    Article  CAS  PubMed  Google Scholar 

  • Glide (2013) Version 6.1. Schrödinger, LLC, New York

  • Granger DL, Taintor RR, Boockvar KS, Hibbs Jr. JB (1996) Measurement of nitrate and nitrite in biological samples using nitrate reductase and griess reaction. Methods Enzymol 268:142–151

    Article  CAS  PubMed  Google Scholar 

  • Ha SK, Park HY, Eom H, Kim Y, Choi I (2012) Narirutin fraction from citrus peels attenuates LPS-stimulated inflammatory response through inhibition of NF-Band MAPKs activation. Food Chem Toxicol 50:3498–3504

    Article  CAS  PubMed  Google Scholar 

  • Heo SJ, Yoon WJ, Kim KN, Oh C, Choi YU, Yoon KT, Kang DH, Qian ZJ, Choi IW, Jung WK (2012) Anti-inflammatory effect of fucoxanthin derivatives isolated from Sargassum siliquastrum in lipopolysaccharide-stimulated RAW 264.7 macrophage. Food Chem Toxicol 50:3336–3342

    Article  CAS  PubMed  Google Scholar 

  • Hu XD, Yang Y, Zhong XG, Zhang XH, Zhang YN, Zheng ZP, Zhou Y, TangW, Wang YF, Hu LH, Zuo JP (2008) Anti-inflammatory effects of Z23 on LPS-induced inflammatory responses in RAW264.7 macrophages. J Ethnopharmacol 120:447–451

    Article  CAS  PubMed  Google Scholar 

  • Impact (2013) Version 6.1. Schrödinger, LLC, New York

  • Kao TH, Huang CW, Chen BH (2012) Functional components in Luffa cylindrica and their effects on anti-inflammation of macrophage cells. Food Chem 135:386–395

    Article  CAS  PubMed  Google Scholar 

  • Krishna PS, Vani K, Prasad MR, Samatha B, Bindu NS, Charya MA, Reddy Shetty P (2013) In-silico molecular docking analysis of prodigiosin and cycloprodigiosin as COX-2 inhibitors. Springerplus 2:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 19:644–648

    Article  Google Scholar 

  • Latypov RF, Liu DJ, Gunasekaran K, Harvey TS, Razinkov VI, Raibekas AA, Lee CC, Lin CP, Lee YL, Wang GC, Cheng YC, Liu HE (2008) Meisoindigo is a promising agent with in vitro and in vivo activity against human acute myeloid leukemia. Leuk Lymphoma 51:897–905

    Google Scholar 

  • Lee SH, Soyoola E, Chanmugam P, Hart S, Sun W, Zhong H, Liou S, Simmons D, Hwang D (1992) Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem 267:25934–25938

    CAS  PubMed  Google Scholar 

  • Li YD, Frenz CM, Chen MH, Wang YR, Li FJ, Luo C, Liang N, Yang H, Bohlin L, Wang CL (2011) Primary virtual and in vitro bioassay screening of natural inhibitors from flavonoids against COX2. Chin J Nat Med 9:156–160

    CAS  Google Scholar 

  • LigPrep (2013) Version 2.8. Schrödinger, LLC, New York

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Llorens O, Perez JJ, Palomer A, Mauleon D (2002) Differential binding mode of diverse cyclooxygenase inhibitors. J Mol Graph Model 20:359–371

    Article  CAS  PubMed  Google Scholar 

  • MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  CAS  PubMed  Google Scholar 

  • Maestro (2013) Version 9.6. Schrodinger, LLC, New York

  • Maestro-Desmond Interoperability Tools (2014) Version 3.8. Schrödinger, New York

  • McGettigan P, Henry D (2011) Cardiovascular risk with non-steroidal anti-inflammatory drugs: Systematic review of population-based controlled observational studies. PLoS Med 8:e1001098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medeiros R, Prediger RD, Passos GF, Pandolfo P, Duarte FS, Franco JL, Dafre AL, Di Giunta G, Figueiredo CP, Takahashi RN, Campos MM, Calixto JB (2007) Connecting TNF-alpha signaling pathways to iNOS expression in a mouse model of Alzheimer’s disease: relevance for the behavioral and synaptic deficits induced by amyloid beta protein. J Neurosci 27:5394–5404

    Article  CAS  PubMed  Google Scholar 

  • Miles EA, Zoubouli P, Calder PC, Phil D (2005) Differential anti-inflammatory effects of phenolic compounds from extra virgin olive oil identified in human whole blood cultures. Nutrition 21:389–394

    Article  CAS  PubMed  Google Scholar 

  • Moller B, Villiger PM (2006) Inhibition of IL-1, IL-6, and TNF-alpha in immune-mediated inflammatory diseases. Springer Semin Immunopathol 27:391–408

    Article  PubMed  Google Scholar 

  • Morgensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273

    Article  Google Scholar 

  • Moro C, Palacios I, Lozano M, D’Arrigo M, Guillamon E, Villares A, Martinez JA, Garcia-Lafuente A (2012) Anti-inflammatory activity of methanolic extracts from edible mushrooms in LPS activated RAW 264.7 macrophages. Food Chem 130:350–355

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Nam NH (2006) Naturally occurring NF-kappaB inhibitors. Mini Rev Med Chem 6:945–951

    Article  CAS  PubMed  Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064

    CAS  PubMed  Google Scholar 

  • Oh JH, Lee TJ, Park JW, Kwon TK (2008) Withaferin A inhibits iNOS expression and nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-kappaB in RAW 264.7 cells. Eur J Pharmacol 599:11–17

    Article  CAS  PubMed  Google Scholar 

  • Prime (2013) Version 3.4. Schrodinger, LLC, New York

  • Priscilla D, Manoj Kumar G, Urmila J, Preetam S (2011) Modeling of Cox-2 inhibitory activity of flavonoids. Int J Pharm Pharm Sci 3:33–44

    Google Scholar 

  • Reddy ST, Herschman HR (1994) Ligand-induced prostaglandin synthase requires expression of the TIS10/PGS-2 prostaglandin synthase gene in murine fibroblast and macrophages. J Biol Chem 269:473–480

    Google Scholar 

  • Rossi A, Ligresti A, Longo R, Russo A, Borrelli F, Sautebin L (2002) The inhibitory effect of propolis and caffeic acid phenethyl ester on cyclooxygenase activity in J774 macrophages. Phytomedicine 9:530–535

    Article  CAS  PubMed  Google Scholar 

  • Sarkar D, Saha P, Gamre S, Bhattacharjee S, Hariharan C, Ganguly S, Sen R, Mandal G, Chattopadhyay S, Majumdar S, Chatterjee M (2008) Anti-inflammatory effect of allylpyrocatechol in LPS-induced macrophages is mediated by suppression of iNOS and COX-2 via the NF-kappaB pathway. Int Immunopharmacol 8:1264–1271

    Article  CAS  PubMed  Google Scholar 

  • Schrodinger Suite (2013) Protein Preparation Wizard, Epik (2013) Version 2.6. Schrödinger, LLC, New York

  • Shen SC, Lee WR, Lin HY, Huang HC, Ko CH, Yang LL, Chen YC (2002) In vitro and in vivo inhibitory activities of rutin, wogonin, and quercetin onlipopolysaccharide-induced nitric oxide and prostaglandin E2 production. Eur J Pharmacol 446:187–194

    Article  CAS  PubMed  Google Scholar 

  • Sudha A, Srinivasan P (2014) Bioassay-guided isolation and antioxidant evaluation of flavonoid compound from aerial parts of Lippia nodiflora L. BioMed Res Int. doi:10.1155/2014/549836

    PubMed  PubMed Central  Google Scholar 

  • Sudha A, Srinivasan P (2015) In vitro, fluorescence-quenching and computational studies on the interaction between lipoxygenase and 5-hydroxy-3′,4′,7-trimethoxyflavone from Lippia nodiflora L. J Recept Sig Transd 35:569–577

    Article  CAS  Google Scholar 

  • Syam S, Bustamam A, Abdullah R, Sukari MA, Hashim NM, Mohan S, Looi CY, Wong WF, Yahayu MA, Abdelwahab SI (2014) β Mangostin suppress LPS-induced inflammatory response in RAW 264.7 macrophages in vitro and carrageenan-induced peritonitis in vivo. J Ethnopharmacol 153:435–445

    Article  CAS  PubMed  Google Scholar 

  • Takaki H, Koqanemaru R, Iwakawa Y, Hiquchi R, Miyamoto T (2003) Inhibitory effect of norditerpenes on LPS-induced TNF-a production from the Okinawan soft coral, Sinularia sp. Biol Pharma Bull 26:380–382

    Article  CAS  Google Scholar 

  • Thuresson ED, Lakkides KM, Rieke CJ, Sun Y, Wingerd BA, Micielli R, Mulichak AM, Malkowski MG, Garavito RM, Smith WL (2001) Prostaglandin endoperoxide H synthase-1: the functions of cyclooxygenase active site residues in the binding, positioning, and oxygenation of arachidonic acid. J Biol Chem 276:10347–10357

    Article  CAS  PubMed  Google Scholar 

  • Tiperciuc B, Parvu A, Tamaian R, Nastasa C, Ionut I, Oniga O (2013) New anti-inflammatory thiazolyl-carbonyl-thiosemicarbazides and thiazolyl-azoles with antioxidant properties as potential iNOS inhibitors. Arch Pharm Res 36:702–714

    Article  CAS  PubMed  Google Scholar 

  • Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenase 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120

    Article  CAS  PubMed  Google Scholar 

  • Vogl S, Picker P, Mihaly-Bison J, Fakhrudin N, Atanasov AG, Heiss EH, Wawrosch C, Reznicek G, Dirsch VM, Saukel J, Kopp B (2013) Ethnopharmacological in vitro studies on Austria’s folk medicine, an unexplored in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. J Ethnopharmacol 149:750–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu LC, Fan NC, Lin MH, Chu IR, Huang SJ, Hu CY, Han SY (2008) Anti-inflammatory effect of spilanthol from Spilanthes acmella on murine macrophage by down-regulating LPS-induced inflammatory mediators. J Agric Food Chem 56:2341–2349

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Tao JY, Zhao L, Huang ZJ, Xiong FL, Zhang SL, Li CM, Xiao F (2007) In vitro anti-inflammatory effects of different solution fractions of ethanol extract from Melilotus suaveolens Ledeb. Chin Med J (Engl) 120:1992–1998

    CAS  Google Scholar 

  • Zhang H, Zan J, Yu G, Jiang M, Liu P (2012) A combination of 3D-QSAR, molecular docking and molecular dynamics simulation studies of benzimidazole-quinolinone derivatives as iNOS inhibitors. Int J Mol Sci 13:11210–11227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong Y, Chiou YS, Pan MH, Shahidi F (2012) Anti-inflammatory activity of lipophilic epigallocatechin gallate (EGCG) derivatives in LPS-stimulated murine macrophages. Food Chem 134:742–748

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial assistance given by Department of Science and Technology (DST WOS-A), New Delhi, for granting fellowship to A. Sudha (Grant No. SR/WOS-A/LS-237/2010). The authors thank Dr. B. Kadalmani, Department of Animal Science, Bharathidasan University, Tiruchirapalli for providing help in in vitro studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pappu Srinivasan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudha, A., Jeyakanthan, J. & Srinivasan, P. Protective effect of 5-hydroxy-3′,4′,7-trimethoxyflavone against inflammation induced by lipopolysaccharide in RAW 264.7 macrophage: in vitro study and in silico validation. Med Chem Res 25, 1754–1767 (2016). https://doi.org/10.1007/s00044-016-1611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1611-1

Keywords

Navigation