Skip to main content

Advertisement

Log in

Structure–activity relationship of a series of 1,2-dihydroquinoline analogues and binding mode with Vibrio cholerae dihydrofolate reductase

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Cholera is a reemerging disease caused by Vibrio cholerae that can occasion severe dehydration and death if it is not appropriately treated. The irrational use of antibiotics has led to emergence and dissemination of resistant strains; thus, the development of new antibiotics is required. The aim of this study was to establish a structure–activity relationship analysis of a series of 1,2-dihydroquinoline analogues described in the literature as dihydrofolate reductase (DHFR) inhibitors and evaluate their binding mode. Herein, some stereoelectronic properties were found to be correlated with the antibacterial activity such as molecular weight, molecular area, volume, ovality, polar surface area and highest occupied molecular orbital (HOMO) energy, besides HOMO location and the electronic distribution profile. A three-dimensional model of V. cholerae DHFR was constructed using Swiss Model Server, and molecular docking of the most potent and less potent 1,2-dihydroquinoline analogues of the series was carried out using AutoDock 4.2 program. The results showed a similar binding mode of the most potent inhibitors with the antibiotic trimethoprim, and some interactions with the DHFR seemed to be important as hydrogen bonds with E28, van der Waals contacts with F32, M51 and hydrophobic interactions with the pocket comprised of residues Q29, G52, K53 and L54. Therefore, our study provides new insights into inhibition of V. cholerae DHFR which may be used to guide the rational design of new antibiotic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Accelrys Software Inc. (2012) Discovery Studio Modeling Environment, Release 3.5, San Diego

  • Adagbada AO, Adesina SA, Nwaokorie FO, Niemogha MT, Coker AO (2012) Cholera epidemiology in Nigeria: an overview. Pan Afr Med J 12:59–71

    PubMed  PubMed Central  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Azman AS, Rudolph KE, Cummings DA, Lessler J (2013) The incubation period of cholera: a systematic review. J Infect 66:432–438

    Article  PubMed  Google Scholar 

  • Bag S, Tawari NR, Degani MS, Queener SF (2010) Design, synthesis, biological evaluation and computational investigation of novel inhibitors of dihydrofolate reductase of opportunistic pathogens. Bioorg Med Chem 18:3187–3197

    Article  CAS  PubMed  Google Scholar 

  • Baker DJ, Beddell CR, Champness JN, Goodford PJ, Norrington FE, Smith DR, Stammers DK (1981) The binding of trimethoprim to bacterial dihydrofolate reductase. FEBS Lett 126:49–52

    Article  CAS  PubMed  Google Scholar 

  • Bordo D, Argos P (1991) Suggestions for “safe” residue substitutions in site-directed mutagenesis. J Mol Biol 217:721–729

    Article  CAS  PubMed  Google Scholar 

  • Bourne CR, Bunce RA, Bourne PC, Berlin KD, Barrow EW, Barrow WW (2009) Crystal structure of Bacillus anthracis dihydrofolate reductase with the dihydrophthalazine-based trimethoprim derivative RAB1 provides a structural explanation of potency and selectivity. Antimicrob Agents Chemother 53:3065–3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourne CR, Wakeham N, Nammalwar B, Tseitin V, Bourne PC, Barrow EW, Mylvaganam S, Ramnarayan K, Bunce RA, Berlin KD, Barrow WW (2013) Structure–activity relationship for enantiomers of potent inhibitors of B. anthracis dihydrofolate reductase. Biochim Biophys Acta 1834:46–52

    Article  CAS  PubMed  Google Scholar 

  • Bowie JU, Lüthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170

    Article  CAS  PubMed  Google Scholar 

  • Bravo L, Silva M, Cabrera R, Fernández A, Ramírez M, Garrigó E, Cabrera LE, Castañeda N (2014) Sensibilidad antimicrobiana de cepas de Vibrio cholerae no-O1 aisladas de pacientes en Cuba. Rev Esp Quimioterap 17:200–201

    Google Scholar 

  • Chen YQ, Kraut J, Callender R (1997) pH-dependent conformational changes in Escherichia coli dihydrofolate reductase revealed by Raman difference spectroscopy. Biophys J 72:936–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocco L, Roth B, Temple C Jr, Montgomery JA, London RE, Blakley RL (1983) Protonated state of methotrexate, trimethoprim, and pyrimethamine bound to dihydrofolate reductase. Arch Biochem Biophys 226:567–577

    Article  CAS  PubMed  Google Scholar 

  • Cody V, Galitsky N, Luft JR, Pangborn W, Blakley RL, Gangjee A (1998) Comparison of ternary crystal complexes of F31 variants of human dihydrofolate reductase with NADPH and a classical antitumor furopyrimidine. Anti-cancer Drug Des 13:307–315

    CAS  Google Scholar 

  • Cody V, Galitsky N, Rak D, Luft JR, Pangborn W, Queener SF (1999) Ligand-induced conformational changes in the crystal structures of Pneumocystis carinii dihydrofolate reductase complexes with folate and NADP+. Biochemistry 38:4303–4312

    Article  CAS  PubMed  Google Scholar 

  • Cody V, Galitsky N, Luft JR, Pangborn W, Rosowsky A, Queener SF (2002) Structure-based enzyme inhibitor design: modeling studies and crystal structure analysis of Pneumocystis carinii dihydrofolate reductase ternary complex with PT653 and NADPH. Acta Crystallogr D 58:946–954

    Article  PubMed  Google Scholar 

  • Cody V, Pace J, Piraino J, Queener SF (2011) Crystallographic analysis reveals a novel second binding site for trimethoprim in active site double mutants of human dihydrofolate reductase. J Struct Biol 176:52–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crooks AT, Hailegiorgis AB (2014) An agent-based modeling approach applied to the spread of cholera. Environ Model Softw 62:164–177

    Article  Google Scholar 

  • Davis SE, Rauckman BS, Chan JH, Roth B (1989) 2,4-Diamino-5-benzylpyrimidines and analogues as antibacterial agents. 11. Quinolylmethyl analogues with basic substituents conveying specificity. J Med Chem 32:1936–1942

    Article  CAS  PubMed  Google Scholar 

  • Didelot X, Pang B, Zhou Z, Mccann A, Ni P, Li D, Achtman M, Kan B (2015) The role of china in the global spread of the current cholera pandemic. PLoS Genet 11:e1005072

    Article  PubMed  PubMed Central  Google Scholar 

  • Feeney J (1990) NMR studies of interactions of ligands with dihydrofolate reductase. Biochem Pharmacol 40:141–152

    Article  CAS  PubMed  Google Scholar 

  • Feeney J, Birdsall B, Kovalevskaya NV, Smurnyy YD, Navarro Peran EMN, Polshakov VI (2011) NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions. Biochemistry 50:3609–3620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin MC, Cheung J, Rudolph MJ, Burshteyn F, Cassidy M, Gary E, Hillerich B, Yao ZK, Carlier PR, Totrov M, Love JD (2015) Structural genomics for drug design against the pathogen Coxiella burnetii. Proteins 83:2124–2136

    Article  CAS  PubMed  Google Scholar 

  • Gavilán RG, Martinez-Urtaza J (2011) Factores ambientales vinculados con la aparición y dispersión de las epidemias de Vibrio en América del Sur. Rev Peru Med Exp Salud Publica 28:109–115

    Article  PubMed  Google Scholar 

  • Goodey NM, Herbert KG, Hall SM, Bagley KC (2011) Prediction of residues involved in inhibitor specificity in the dihydrofolate reductase family. Biochim Biophys Acta 1814:1870–1879

    Article  CAS  PubMed  Google Scholar 

  • Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res 38:W695–W699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris JB, Larocque RC, Qadri F, Ryan ET, Calderwood SB (2012) Cholera. Lancet 379:2466–2476

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawser S, Lociuro S, Islam K (2006) Dihydrofolate reductase inhibitors as antibacterial agents. Biochem Pharmacol 71:941–948

    Article  CAS  PubMed  Google Scholar 

  • Heaslet H, Harris M, Fahnoe K, Sarver R, Putz H, Chang J, Subramanyam C, Barreiro G, Miller JR (2009) Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim. Proteins 76:706–717

    Article  CAS  PubMed  Google Scholar 

  • Howell EE, Villafrança JE, Warren MS, Oatley SJ, Kraut J (1986) Functional role of aspartic acid-27 in dihydrofolate reductase revealed by mutagenesis. Science 231:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Huennekens FM, Duffy TH, Vitols KS (1987) Folic acid metabolism and its disruption by pharmacologic agents. NCI Monogr 5:1–8

    PubMed  Google Scholar 

  • Johnson JV, Rauckman BS, Baccanari DP, Roth B (1989) 2,4-Diamino-5-benzylpyrimidines and analogues as antibacterial agents. 12. 1,2-Dihydroquinolylmethyl analogues with high activity and specificity for bacterial dihydrofolate reductase. J Med Chem 32:1942–1949

    Article  CAS  PubMed  Google Scholar 

  • Joska TM, Anderson AC (2006) Structure–activity relationships of Bacillus cereus and Bacillus anthracis dihydrofolate reductase: toward the identification of new potent drug leads. Antimicrob Agents Chemother 50:3435–3443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaper JB, Morris JG Jr, Levine MM (1995) Cholera. Clin Microbiol Rev 8:48–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khavrutskii IV, Price DJ, Lee J, Brooks CL III (2007) Conformational change of the methionine 20 loop of Escherichia coli dihydrofolate reductase modulates pKa of the bound dihydrofolate. Protein Sci 16:1087–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:D387–D392

    Article  CAS  PubMed  Google Scholar 

  • Kitaoka M, Miyata ST, Unterweger D, Pukatzki S (2011) Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 60:397–407

    Article  PubMed  Google Scholar 

  • Klon AE, Héroux A, Ross LJ, Pathak V, Johnson CA, Piper JR, Borhani DW (2002) Atomic structures of human dihydrofolate reductase complexed with NADPH and two lipophilic antifolates at 1.09 a and 1.05 a resolution. J Mol Biol 320:677–693

    Article  CAS  PubMed  Google Scholar 

  • Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47:558–565

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Moss DS, Thornton JM (1993) Main-chain bond lengths and bond angles in protein structures. J Mol Biol 231:1049–1067

    Article  CAS  PubMed  Google Scholar 

  • Leach AR, Schoichet BK, Peishoff CE (2006) Prediction of protein–ligand interactions. Docking and scoring: successes and gaps. J Med Chem 49:5851–5855

    Article  CAS  PubMed  Google Scholar 

  • Leibovici-Weissman Y, Neuberger A, Bitterman R, Sinclair D, Salam MA, Paul M (2014) Antimicrobial drugs for treating cholera. Cochrane Database Syst Rev 6:CD008625

    PubMed  Google Scholar 

  • Li R, Sirawaraporn R, Chitnumsub P, Sirawaraporn W, Wooden J, Athappilly F, Turley S, Hol WG (2000) Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs. J Mol Biol 295:307–323

    Article  CAS  PubMed  Google Scholar 

  • Li X, Hilgers M, Cunningham M, Chen Z, Trzoss M, Zhang J, Kohnen L, Lam T, Creightin C, Kedar GC, Nelson K, Kwan B, Stidham M, Brown-Driver V, Shaw KJ, Finn J (2011) Structure-based design of new DHFR-based antibacterial agents: 7-aryl-2,4-diaminoquinazolines. Bioorg Med Chem Lett 21:5171–5176

    Article  PubMed  Google Scholar 

  • Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  PubMed  Google Scholar 

  • Mandal S, Manisha DM, Nishitf KP (2011) Cholera: a great global concern. Asian Pac J Trop Med 4:573–580

    Article  PubMed  Google Scholar 

  • Matthews DA, Alden RA, Bolin JT, Freer ST, Hamlin R, Xuong N, Kraut J, Poe M, Williams M, Hoogsteen K (1977) Dihydrofolate reductase: X-ray structure of the binary complex with methotrexate. Science 197:452–455

    Article  CAS  PubMed  Google Scholar 

  • Matthews DA, Bolin JT, Burridge JM, Filman DJ, Volz KW, Kaufman BT, Beddell CR, Champness JN, Stammers DK, Kraut J (1985) Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim. J Biol Chem 260:381–391

    CAS  PubMed  Google Scholar 

  • Moore S, Thomson N, Mutreja A, Piarroux R (2014) Widespread epidemic cholera caused by a restricted subset of Vibrio cholerae clones. Clin Microbiol Infec 20:373–379

    Article  CAS  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodseel DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano T, Spencer HT, Appleman JR, Blakley RL (1994) Critical role of phenylalanine 34 of human dihydrofolate reductase in substrate and inhibitor binding and in catalysis. Biochemistry 33:9945–9952

    Article  CAS  PubMed  Google Scholar 

  • Naumann K (2000) Influence of chlorine substituents on biological activity of chemicals: a review. Pest Manag Sci 56:3–21

    Article  CAS  Google Scholar 

  • Oefner C, Parisi S, Schulz H, Lociuro S, Dale GE (2009) Inhibitory properties and X-ray crystallographic study of the binding of AR-101, AR-102 and iclaprim in ternary complexes with NADPH and dihydrofolate reductase from Staphylococcus aureus. Acta Crystallogr D 65:751–757

    Article  CAS  PubMed  Google Scholar 

  • Ohmura T, Ueda T, Hashimoto Y, Imoto T (2001) Tolerance of point substitution of methionine for isoleucine in hen egg white lysozyme. Protein Eng 14:421–425

    Article  CAS  PubMed  Google Scholar 

  • Peitsch MC (1995) Protein modeling by E-mail. Biotechnology 13:658–660

    Article  CAS  Google Scholar 

  • Rauckman BS, Tidwell MY, Johnson JV, Roth B (1989) 2,4-Diamino-5-benzylpyrimidines and analogues as antibacterial agents. 10. 2,4-Diamino-5-(6-quinolylmethyl)-and-[(tetrahydro-6-quinolyl)methyl]pyrimidine derivatives. Further specificity studies. J Med Chem 32:1927–1935

    Article  CAS  PubMed  Google Scholar 

  • Roth B, Rauckman BS, Ferone R, Baccanari DP, Champness JN, Hyde RM (1987) 2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 7. Analysis of the effect of 3,5-dialkyl substituent size and shape on binding to four different dihydrofolate reductase enzymes. J Med Chem 30:348–356

    Article  CAS  PubMed  Google Scholar 

  • Roth B, Tidwell MY, Ferone R, Baccanari DP, Sigel CW, Deangelis D, Elwell LP (1989) 2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 13. Some alkenyl derivatives with high in vitro activity against anaerobic organisms. J Med Chem 32:1949–1958

    Article  CAS  PubMed  Google Scholar 

  • Sawaya MR, Kraut J (1997) Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence. Biochemistry 36:586–603

    Article  CAS  PubMed  Google Scholar 

  • Schneider P, Hawser S, Islam K (2003) Iclaprim, a novel diaminopyrimidine with potent activity on trimethoprim sensitive and resistant bacteria. Bioorg Med Chem Lett 13:4217–4221

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer BI, Strimatkandada S, Gritsman H, Sheridan R, Venkataraghavan R, Bertino JR (1989) Probing the role of two hydrophobic active site residues in the human dihydrofolate reductase by site-directed mutagenesis. J Biol Chem 264:20786–20795

    CAS  PubMed  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  CAS  PubMed  Google Scholar 

  • The PyMOL Molecular Graphics System (2009) Version 1.2r2, Schrodinger, LCC

  • Thillet J, Absil J, Stones SR, Pictet R (1988) Site-directed mutagenesis of mouse dihydrofolate reductase. Mutants with increased resistance to methotrexate and trimethoprim. J Biol Chem 263:12500–12508

    CAS  PubMed  Google Scholar 

  • Vaughan WR (1955) Organic syntheses, collective vol 3. Wiley, New York. In: 2,4-dimethylquinoline, pp 329–331

  • Volpato JP, Pelletier JN (2009) Mutational ‘hot-spots’ in mammalian, bacterial and protozoal dihydrofolate reductases associated with antifolate resistance: sequence and structural comparison. Drug Resist Update 12:28–41

    Article  CAS  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2014) Cholera, 2013. Weekly epidemiological record. http://www.who.int/wer/2014/wer8931/en/ Accessed 31 Aug 2015

Download references

Acknowledgments

The Brazilian agencies: National Counsel of Technological and Scientific Development—(Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq). Vítor Won-Held Rabelo was supported by a scholarship from PIBIC/CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula A. Abreu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabelo, V.W., Sampaio, T.F., Duarte, L.D. et al. Structure–activity relationship of a series of 1,2-dihydroquinoline analogues and binding mode with Vibrio cholerae dihydrofolate reductase. Med Chem Res 25, 1524–1537 (2016). https://doi.org/10.1007/s00044-016-1583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1583-1

Keywords

Navigation