Skip to main content
Log in

Synthesis, biological evaluation of 2,3-disubstituted-imidazolyl/benzimidazolyl-quinazolin-4(3H)-one derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of disubstituted-quinazolin-4(3H)-ones derivatives have been synthesized and confirmed through IR, 1H- and 13C-NMR, MS spectroscopy and elemental analysis. Synthesized compounds were screened for in vitro and in vivo anti-inflammatory using human red blood cell membrane stabilization method and carrageenan-induced rat paw edema. The antimicrobial potency was measured by disk diffusion method. The compounds with imidazole (3g) and benzimidazole nucleus (4b and 4f) displayed a significant anti-inflammatory activity by in vitro method. Moreover, the compounds 3d and 4a exhibited a significant anti-inflammatory activity in vivo. The compounds 3d, 3f and 4g were found to be active antimicrobial agents, when compared with reference drug ciprofloxacin and amphotericin B. Thus, these compounds can serve as promising leads for further biological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Fig. 3

Similar content being viewed by others

References

  • Achar KC, Hosamani KM, Seetharamareddy HR (2010) In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Eur J Med Chem 45(5):2048–2054

    Article  CAS  PubMed  Google Scholar 

  • Alagarsamy V, Revathi R, Meena S, Ramaseshu K, Rajasekaran S, De Clercq E (2004) AntiHIV, antibacterial and antifungal activities of some 2,3-disubstituted quinazolin-4 (3Η)-ones. Indian J Pharm Sci 66:459–462

    CAS  Google Scholar 

  • Al-Amiery A, Kadhum AAH, Shamel M (2014) Antioxidant and antimicrobial activities of novel quinazolinones. Med Chem Res 23:236–242. doi:10.1007/s00044-013-0625-1

    Article  CAS  Google Scholar 

  • Atkinson ER, Lufkin JE (1963) dl-4,4′,6,6′-Tetrachlorodiphenic acid. Org Synth Coll 4:872

    Google Scholar 

  • Bartroli J et al (1998) New azole antifungals. 3. Synthesis and antifungal activity of 3-substituted-4 (3H)-quinazolinones. J Med Chem 41:1869–1882. doi:10.1021/jm9707277

    Article  CAS  PubMed  Google Scholar 

  • Belligno AM, Amico-Roxas Ottaviano G (1972) Anti-inflammatory activity of several derivatives of 2-methyl-3-aryl-4-quinazolone. Boll Chim Farm 111(8):472–479

    CAS  PubMed  Google Scholar 

  • Bogert MTS, Seil HA et al (1907) Researches on quinazolines. XVIII. 2,3-Dialkyl-4-quinazolones and the products obtained by alkylating 2-alkyl-4-quinazolones. J Am Chem Soc 29:517. doi:10.1021/ja01958a012

    Article  CAS  Google Scholar 

  • Chao Q, Deng L, Shih H, Leoni LM, Genini D, Carson DA, Cottam HB (1999) Substituted isoquinolines and quinazolines as potential anti-inflammatory agents: synthesis and biological evaluation of inhibitors of tumor necrosis factor–α. J Med Chem 42:3860–3873. doi:10.1021/jm9805900

    Article  CAS  PubMed  Google Scholar 

  • Fitzi K, Pfister R et al (1974) Imidazole derivatives for treating pain, inflammation and fever. US patent 3,784,691

  • Galhena PB, Samarakoon SR, Thabrew MI, Weerasinghe G, Thammitiyagodage MG, Ratnasooriya W, Tennekoon KH (2012) Anti-inflammatory activity is a possible mechanism by which the polyherbal formulation comprised of Nigella sativa (seeds), Hemidesmus indicus (root), and Smilax glabra (rhizome) mediates its antihepatocarcinogenic effects. eCAM 2012, 11. doi:10.1155/2012/108626

  • Gali R, Banothua J, Porikab M, Velpula R et al (2014) Indolylmethylene benzo[h]thiazolo[2,3-b]quinazolinones: synthesis, characterization and evaluation of anticancer and antimicrobial activities. Bioorg Med Chem Lett 17:4239–4242. doi:10.1016/j.bmcl.2014.07.030

    Article  Google Scholar 

  • Gandhidasan R, Thamaraichelvan A, Baburaj S (1991) Anti-inflammatory action of Lannea coromandelica by HRBC membrane stabilisation. Fitoterapia 62:81–83

    Google Scholar 

  • Gangwal N, Kothawade U, Galande A, Pharande D, Dhake A (2001) Synthesis of 1-substituted-2-chloromethyl-4-(1H)-quinazolinones as antimicrobial agents. Indian J Heterocycl Chem 10:291–294

    CAS  Google Scholar 

  • Grover G, Kini SG (2006) Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. Euro J Med Chem 41(2):256–262

    Article  CAS  Google Scholar 

  • Hazarkhani H, Karimi B (2003) A facile synthesis of new 3-(2-benzimidazolyl)-2-alkyl-4-(3H)-quinazolinones under microwave irradiation. Tetrahedron 59(26):4757–4760

    Article  CAS  Google Scholar 

  • Hunoor RS, Patil BR, Badiger DS, Vadavi RS, Gudasi KB, Magannavar CV, Muchandi IS (2010) A study of anti-inflammatory and analgesic activity of new 2,3-disubstituted 1,2-dihydroquinazolin-4(3H)-one derivative and its transition metal complexes. Chem Pharm Bull 58(5):712–716

    Article  CAS  PubMed  Google Scholar 

  • Jiang JB, Hesson D, Dusak B, Dexter D, Kang G, Hamel E (1990) Synthesis and biological evaluation of 2-styrylquinazolin-4(3H)-ones, a new class of antimitotic anticancer agents which inhibit tubulin polymerization. J Med Chem 33:1721–1728. doi:10.1021/jm00168a029

    Article  CAS  PubMed  Google Scholar 

  • Kuelzer R et al (2012) 2-Aminobenz-imidazole derivatives useful in the treatment of inflammation. WO 2012076672 A1, 14 Jun 2012

  • Klemme CJ (1940) Synthesis of iodohippuric acids. I. 2,5-, 3,5- and 3,4-diiodohippuric acids. J Org Chem 5:227–234. doi:10.1021/jo01209a002

    Article  CAS  Google Scholar 

  • Laddha SS, Wadodkar SG, Meghal SK (2006) Studies on some biologically active substituted 4 (3H)-quinazolinones. Part 1. Synthesis, characterization and anti-inflammatory-antimicrobial activity of 6,8-disubstituted 2-phenyl-3-[substituted-benzothiazol-2-yl]-4(3H)-quinazolinones. Arkivoc 11:1–20

    Google Scholar 

  • Martinez-Suarez JV, Rodriguez-Tudela JL (1995) Patterns of in vitro activity of itraconazole and imidazole antifungal agents against Candida albicans with decreased susceptibility to fluconazole from Spain. Antimicrob Agents Chem 39:1512–1516. doi:10.1128/AAC.39.7.1512

    Article  CAS  Google Scholar 

  • Mohamed MS, Kamel MM, Kassem EM, Abotaleb N, El-moez SIA, Ahmed MF (2010) Novel 6,8-dibromo-4(3H)quinazolinone derivatives of anti-bacterial and anti-fungal activities. Eur J Med Chem 45(8):3311–3319

    Article  CAS  PubMed  Google Scholar 

  • Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140(6):871–882

    Article  CAS  PubMed  Google Scholar 

  • Palomer A, Cabré F, Pascual J, Campos J, Trujillo MA, Entrena A, Gallo MA, García L, Mauleón D, Espinosa A (2002) Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models. J Med Chem 45(7):1402–1411

    Article  CAS  PubMed  Google Scholar 

  • Pattan SR, Reddy VVK, Manvi FV, Desai BG, Bhat AR (2006) Synthesis of N-3(4-(4-chlorophenylthiazole-2-yl)-(2-(amino)methyl)-quinazoline-4(3H)-one and their derivatives for antitubercular activity. Indian J Chem B 45:1778

    Google Scholar 

  • Priya MGR, Zulykama Y, Girija K, Murugesh S, Perumal PT (2011) Synthesis of 4–(3H)–quinazolinones by microwave assisted tandem reaction and evaluation of their antibacterial and antifungal activities. Indian J Chem B 50:98–102

    Google Scholar 

  • Raghavendra NM, Thampi P, Gurubasavarajaswamy PM, Sriram D (2007) Synthesis and antimicrobial activities of some novel substituted 2-imidazolyl-N-(4-oxo-quinazolin-3(4H)-yl)-acetamides. Chem Pharm Bull 55:1615–1619. doi:10.1248/cpb.55.1615

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra NM, Gurubasavarajaswamy PM, Nagaranavile KS, Parameshwaran T (2009) Antitumor actions of imidazolyl-(4-oxoquinazolin-3 (4H)-yl)-acetamides against Ehrlich Ascites Carcinoma. Arch Pharm Res 32:431–436. doi:10.1007/s12272-009-1317-8

    Article  CAS  PubMed  Google Scholar 

  • Rajakumar PA, Ramasamy A et al (2011) Synthesis and in vitro anti-inflammatory activity of novel glycodendrimers with benzene-1,3,5-carboxamide core and triazole as branching unit. Eur J Med Chem 46:4687–4695. doi:10.1016/j.ejmech.2011.06.017

    Article  CAS  PubMed  Google Scholar 

  • Sadique J, Chandra T, Thenmozhi V, Elango V (1987) Biochemical modes of action of Cassia occidentalis and Cardiospermum halicacabum in inflammation. J Ethnopharmacol 19:201–212. doi:10.1016/0378-8741(87)90042-0

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Sharma S, Rane N et al (2004) Synthesis and in vitro antimicrobial activities of 2-hydroxy-6-methyl-7-(arylamino)-1,7-dihydropurin-8-ones. Bioorg Med Chem 12:3135–3139. doi:10.1016/j.bmc.2004.04.007

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Kumar A, Upadhyay S, Sahu V, Singh J (2009) Synthesis and QSAR modeling of 2-acetyl-2-ethoxycarbonyl-1-[4(4′-arylazo)-phenyl]-N,N-dimethylaminophenyl aziridines as potential antibacterial agents. Eur J Med Chem 44:251–259. doi:10.1016/j.ejmech.2008.02.016

    Article  CAS  PubMed  Google Scholar 

  • Shinde UA, Phadke AS, Nair AM, Mungantiwar AA, Dikshit VJ, Saraf MN (1999) Membrane stabilizing activity: a possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia 70:251–257. doi:10.1016/S0367-326X(99)00030-1

    Article  CAS  Google Scholar 

  • Smalley R, Suschitzky H, Tanner E (1966) Thermolysis of isatoic anhydride and benzotriazinone. Tetrahedron Lett 7(29):3465–3469

    Article  Google Scholar 

  • Smith QE (1960) Pharmacological screening test progress in medicinal chemistry, vol I. Butterworth, London

    Google Scholar 

  • Sondhi SM, Rajvanshi S, Johar M, Bharti N, Azam A, Singh AK (2002) Anti-inflammatory, analgesic and antiamoebic activity evaluation of pyrimido [1,6-a] benzimidazole derivatives synthesized by the reaction of ketoisothiocyanates with mono and diamines. Eur J Med Chem 37(10):835–843

    Article  CAS  PubMed  Google Scholar 

  • Soni JP, Sen DJ, Modh KM (2011) Structure activity relationship studies of synthesised pyrazolone derivatives of imidazole, benzimidazole and benztriazole moiety for anti-inflammatory activity. J Appl Pharm Sci 01(04):115–120

    Google Scholar 

  • Strakovs A, Tonkikh NN, Petrova M, Ryzhanova KV, Palitis E (2002) The reaction of 2-aminoethyl- and 3-aminopropyl-substituted heterocycles with 2-formyl-1,3-cyclanediones and 4-oxo-3,1-benzoxazines. Chem Heterocycl Compd 38(4):449–455

    Article  CAS  Google Scholar 

  • Tiwari AK, Mishra AK, Bajpai A, Mishra P, Sharma RK, Pandey VK, Singh VK (2006) Synthesis and pharmacological study of novel pyrido-quinazolone analogues as anti-fungal, antibacterial, and anticancer agents. Bioorg Med Chem Lett 16(17):4581–4585

    Article  CAS  PubMed  Google Scholar 

  • Viegas-Junior C, Danuello A, da Silva BV, Barreiro EJ, Fraga CA (2007) Molecular hybridization: a useful tool in the design of new drug prototypes. Curr Med Chem 14(17):1829–1852

    Article  CAS  PubMed  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1963) Anti-inflammatory and antipyretic activities of indomethacin,1-(p-chlorobenzoyl)-5-methoxy-2-methylindole-3-acetic acid. J Pharmcol Exp Ther 141:369–376

    CAS  Google Scholar 

  • Zayed MF, Hassan MH (2014) Synthesis and biological evaluation studies of novel quinazolinone derivatives as antibacterial and anti-inflammatory agents. Saudi Pharm J 22(2):157–162

    Article  Google Scholar 

  • Zayed MF, Ahmed HE, Ihmaid S, Omar ASM, Abdelrahim AS (2015) Synthesis and screening of some new fluorinated quinazolinone–sulphonamide hybrids as anticancer agents. J Taibah Univ Med Sci 10(3):333–339

    Google Scholar 

Download references

Acknowledgments

The authors thank SAIF, IIT, Madras, for the NMR and GCMS spectra. Author DAP is thankful to Dr. U.K. Patil, Manish and Mahesh. This author is grateful for the blessings of the late Prof. Dr. R.A. Fursule.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilip A. Patil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, D.A., Surana, S.J. Synthesis, biological evaluation of 2,3-disubstituted-imidazolyl/benzimidazolyl-quinazolin-4(3H)-one derivatives. Med Chem Res 25, 1125–1139 (2016). https://doi.org/10.1007/s00044-016-1552-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1552-8

Keywords

Navigation