Skip to main content

Advertisement

Log in

Synthesis and evaluation of unsymmetrical heterocyclic thioureas as potent β-glucuronidase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Thiourea analogs 120 were synthesized and evaluated for their in vitro β-glucuronidase inhibitory potential. The compounds 9 (0.86 ± 0.01 μM), 6 (1.24 ± 0.01 μM), 16 (1.64 ± 0.02 μM) and 15 (2.12 ± 0.02 μM) showed potent activity. Other analogs 15, 7, 8, 10, 11, 13, 17, 20 showed better activity than standard drug d-saccharic acid 1,4-lactone (47.34 ± 0.21 μM) ranging 4.36–34.4 μM. All synthetic compounds were characterized by different spectroscopic methods. This study has identified a new class of potent inhibitors β-glucuronidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  • Ahmad S, Hughes MA, Yeh LA, Scott JE (2012) Potential repurposing of known drugs as potent bacterial β-glucuronidase inhibitors. J Biomol Screen 17:957–965

    Article  PubMed  Google Scholar 

  • Ala JP, DeLoskey RJ, Huston EE, Jadhav PK, Lam PYS, Eyermann CJ, Hodge CN, Schadt MC, Lewandowski FA, Weber PC, McCabe DD, Duke JL, Chang CH (1998) Molecular recognition of cyclic urea HIV-1 protease inhibitors. J Biol Chem 273:12325–12331

    Article  CAS  PubMed  Google Scholar 

  • Anouar EH, Raweh S, Bayach I, Taha M, Baharudin MS, Meo FD, Hasan MH, Adam A, Ismail NH, Weber JF, Trouillas P (2013) Antioxidant properties of phenolic Schiff bases: structure-activity relationship and mechanism of action. J Comput Aided Mol Des 27:951–964

    Article  CAS  Google Scholar 

  • Aziz AN, Taha M, Ismail NH, Anouar EH, Yousuf S, Jamil W, Awang K, Ahmat N, Khan KM, Kashif SM (2014) Synthesis, crystal structure, DFT studies and evaluation of the antioxidant activity of 3,4-Dimethoxybenzenamine schiff bases. Molecules 19:8414–8433

    Article  PubMed  Google Scholar 

  • Bäckbro K, Löwgren S, Österlund K, Atepo J, Unge T (1997) Unexpected binding mode of a cyclic sulfamide HIV-1 protease inhibitor. J Med Chem 40:898–902

    Article  PubMed  Google Scholar 

  • Bank N, Bailine SH (1965) Urinary β-glucuronidase activity in patients with urinary-tract infection. N Engl J Med 272:70–75

    Article  CAS  PubMed  Google Scholar 

  • Bloom JD, Dushin RG, Curran KJ, Donahue F, Norton EB, Terefenko E, Jonas TR, Ross AA, Feld B, Lang SA, Grandi D (2004) Bioorgan Med Chem 14:3401–3406

    Article  CAS  Google Scholar 

  • Boyland E, Gasson JE, Williams DC (1957) Enzyme activity in relation to cancer; the urinary β-glucuronidase activity of patients suffering from malignant disease. Br J Cancer 11:120–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caygill JC, Pitkeathly DA (1966) A study of β-acetylglucosaminase and acid phosphatase in pathological joint fluids. Ann Rheum Dis 25:137–144

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng TC, Chuang KH, Roffler SR, Cheng KW, Leu YL, Chuang CH, Huang CC, Kao CH, Hsieh YC, Chang LS, Cheng TL, Chen CS (2015) Discovery of specific inhibitors for intestinal E. coli β-Glucuronidase through in silico virtual screening. Sci World J 2015:740815. doi:10.1155/2015/740815

    Article  Google Scholar 

  • Chrusciel RA, Strohbach JW (2004) Non-peptidic HIV protease inhibitors. Curr Top Med Chem 4:1097–1114

    Article  CAS  PubMed  Google Scholar 

  • Flieger J, Żelazko AC, Rządkowska M, Szacoń E, Matosiuk D (2012) Usefulness of reversed-phase HPLC enriched with room temperature imidazolium based ionic liquids for lipophilicity determination of the newly synthesized analgesic active urea derivatives. J Pharm Biomed Anal 66:58–67

    Article  CAS  PubMed  Google Scholar 

  • Fortin JS, Lacroix J, Desjardins M (2007) N-Phenyl-N′-(2-chloroethyl)urea analogs of combretastatin A-4: is the N-phenyl-N′-(2-chloroethyl)urea pharmacophore mimicking the trimethoxy phenyl moiety. Bioorgan Med Chem 15:4456–4469

    Article  CAS  Google Scholar 

  • Fortin S, Wei L, Moreau E, Labrie P, Petitclerc É, Kotra LP, Gaudreault RC (2009) Mechanism of action of N-phenyl-N′-(2-chloroethyl)ureas in the colchicine-binding site at the interface between α- and β-tubulin. Bioorgan Med Chem 17:3690–3697

    Article  CAS  Google Scholar 

  • Gonick HC, Kramer HJ, Schapiro AE (1973) Urinary β-glucuronidase activity in renal disease. Arch Intern Med 132:63–69

    Article  CAS  PubMed  Google Scholar 

  • Holešová S, Valášková M, Hlaváč D, Madejová J, Samlíková M, Tokarský J, Pazdziora E (2014) Antibacterial kaolinite/urea/chlorhexidine nanocomposites: experiment and molecular modeling. Appl Surf Sci 305:783–791

    Article  Google Scholar 

  • Hultén J, Bonham NM, Nillroth U, Hansson T, Zuccarello G, Bouzide A, Åqvist J, Classon B, Danielson HA, Karlén Kvarnstrom I, Samuelsson B, Hallberg A (1997) Cyclic HIV-1 protease inhibitors derived from mannitol: synthesis, inhibitory potencies, and computational predictions of binding affinities. J Med Chem 40:885–889

    Article  PubMed  Google Scholar 

  • Jamil W, Perveen S, Shah SAA, Taha M, Ismail NH, Perveen S, Ambreen N, Khan KM, Choudhary MI (2014) Phenoxyacetohydrazide schiff bases: β-Glucuronidase inhibitors. Molecules 19:8788–8802

    Article  PubMed  Google Scholar 

  • Kallet HA, Lapco L (1967) Urine β-glucuronidase activity in urinary tract disease. J Urol 97:352–356

    CAS  PubMed  Google Scholar 

  • Khan KM, Ali M, Taha M, Perveen S, Choudhary MI, Voelter W (2008) An expedient and selective approach towards disulfides using sodium bromate/sodium hydrogen sulfite reagent. Lett Org Chem 5:432–434

    Article  CAS  Google Scholar 

  • Khan KM, Taha M, Ali M, Perveen S (2009) A mild and alternative approach towards symmetrical disulfides using H3IO5/NaHSO3 combination. Lett Org Chem 6:319–320

    Article  CAS  Google Scholar 

  • Khan KM, Taha M, Rahim F, Ali M, Jamil W, Perveen S, Choudhary MI (2010) An improved method for the synthesis of disulfides by periodic acid and sodium hydrogen sulfite in water. Lett Org Chem 7:244

    Article  Google Scholar 

  • Khan KM, Taha M, Naz F, Khan M, Rahim F, Samreen Perveen S, Choudhary MI (2011) Synthesis and in vitro leishmanicidal activity of disulfide derivatives. Med Chem 7:704–710

    Article  CAS  PubMed  Google Scholar 

  • Khan KM, Taha M, Naz F, Ali S, Perveen S, Choudhary MI (2012) Acylhydrazide schiff bases: DPPH radical and superoxide anion scavengers. Med Chem 8:705–710

    Article  CAS  PubMed  Google Scholar 

  • Khan KM, Naz F, Taha M, Khan A, Perveen S, Choudhary MI, Voelter W (2014a) Synthesis and in vitro urease inhibitory activity of N, N’-disubsituted thioureas. Eur J Med Chem 74:314–323

    Article  CAS  PubMed  Google Scholar 

  • Khan KM, Rahim F, Wadood A, Taha M, Khan M, Naureen S, Ambreen N, Hussain S, Perveen S, Choudhary MI (2014b) Evaluation of bisindole as potent β-Glucuronidase inhibitors: synthesis and in silico based studies. Bioorgan Med Chem Lett 24:1825–1829

    Article  CAS  Google Scholar 

  • Khan KM, Saad SM, Shaikh NN, Hussain S, Fakhri MI, Perveen S, Taha M, Choudhary MI (2014c) Synthesis and β-glucuronidase inhibitory activity of 2-arylquinazolin-4(3H)-ones. Bioorgan Med Chem 22:3449–3454

    Article  CAS  Google Scholar 

  • Khan KM, Ambreen N, Taha M, Halim SA, Zaheer-ul-Haq Naureen S, Rasheed S, Perveen S, Ali S, Choudhary MI (2014d) Structure-based design, synthesis and biological evaluation of β-Glucuronidase inhibitors. J Comput Aided Mol Des 28:577–585

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Kang M, Shin M, Kim JM, Kang SU, Lim JO, Choi HK (2003) N-(3-acyloxy-2-benzylpropyl)-N’-[4-(methylsulfonylamino)benzyl]thiourea analogs: novel potent and high affinity antagonists and partial antagonists of the vanilloid receptor. J Med Chem 46:3116–3126

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Wang Y, Lin H, Zuo D, Wang L, Zhao Y, Gong P (2014) Design, synthesis and biological evaluation of novel thieno[3,2-d]pyrimidine derivatives containing diaryl urea moiety as potent antitumor agents. Eur J Med Chem 85:215–227

    Article  CAS  PubMed  Google Scholar 

  • Musharraf SG, Bibi A, Shahid N, Najam-ul-Haq M, Khan M, Taha M, Mughal UR, Khan KM (2012) Acylhydrazide and isatin schiff bases as alternate UV laser desorption ionization (LDI) matrices for low molecular weight (LMW) peptides analysis. Am J Anal Chem 3:779–789

    Article  CAS  Google Scholar 

  • Plum CM (1967) β-glucoronidase activity in serum, cerebrospinal fluid and urine in normal subjects and in neurological and mental patients. Enzymol Biol Clin 8:97–112

    CAS  Google Scholar 

  • Rahim F, Ullah K, Ullah H, Wadood A, Taha M, Rehman AU, Uddin I, Ashraf M, Shaukat A, Rehman W, Hussain S, Khan KM (2015) Triazinoindole analogs as potent inhibitors of α-glucosidase: synthesis, biological evaluation and molecular docking studies. Bioorg Chem 58:81–87

    Article  CAS  PubMed  Google Scholar 

  • Reddy BS (1976) Dietary factors and cancer of the large bowel. Semin Oncol 3:351–359

    CAS  PubMed  Google Scholar 

  • Roberts AP, Frampton J, Karim SM, Beard RW (1967) Estimation of β-glucoronidase activity in urinary-tract infection. N Engl J Med 276:1468–1470

    Article  CAS  PubMed  Google Scholar 

  • Ronald AR, Silverblatt F, Clark H, Cutler RE, Turck M (1971) Failure of urinary β-glucuronidase activity to localize the site of urinary tract infection. Appl Environ Microbiol 21:990–992

    CAS  Google Scholar 

  • Santos LD, Lima LA, Cechinel-Filho V, Corrêa R, Buzzi FC, Nunes RJ (2008) Synthesis of new 1-phenyl-3-{4-[(2E)-3-phenylprop-enoyl]phenyl}-thiourea and urea derivatives with antinociceptive activity. Bioorgan Med Chem 16:8526–8534

    Article  Google Scholar 

  • Schapiro A, Paul W, Gonick H (1968) Urinary β-glucuronidase in urologic diseases of the kidneys. J Urol 100:146–157

    CAS  PubMed  Google Scholar 

  • Seth PP, Ranken R, Robinson DE, Osgood SA, Risen LM, Rodgers EL, Migawa MT, Jefferson EA, Swayze EE (2004) Aryl urea analogs with broad-spectrum antibacterial activity. Bioorgan Med Chem 14:5569–5572

    Article  CAS  Google Scholar 

  • Sham HL, Zhao C, Marsh KC, Betebenner DA (1996a) Novel azacyclic ureas that are potent inhibitors of HIV-1 protease. J Biochem Biophys Res Commun 225:436–440

    Article  CAS  Google Scholar 

  • Sham HL, Zhao C, Stewart KD, Betebenner DA, Lin S (1996b) A novel, picomolar inhibitor of human immunodeficiency virus type 1 protease. J Med Chem 39:392–397

    Article  CAS  PubMed  Google Scholar 

  • Sivan SK, Vangala R, Manga V (2013) Molecular docking guided structure based design of symmetrical N, N′-disubstituted urea/thiourea as HIV-1 gp120–CD4 binding inhibitors. Bioorgan Med Chem 21:4591–4599

    Article  CAS  Google Scholar 

  • Sperker B, Backman JT, Kromer K (1997) The role of β-glucuronidase in drug disposition and drug targeting in humans. Clin Pharm 33:18–31

    Article  CAS  Google Scholar 

  • Taha M, Ismail NH, Jamil W, Yousuf S, Jaafar FM, Ali MI, Kashif SM, Hussain E (2013) Synthesis, evaluation of antioxidant activity and crystal structure of 2,4-Dimethylbenzoylhydrazones. Molecules 18:10912–10929

    Article  CAS  PubMed  Google Scholar 

  • Taha M, Naz H, Rasheed S, Ismail NH, Rahman AA, Yousuf S, Choudhary MI (2014) Synthesis of 4-Methoxybenzoylhydrazones and evaluation of their antiglycation activity. Molecules 19:1286–1301

    Article  PubMed  Google Scholar 

  • Taha M, Ismail NH, Lalani S, Fatmi MQ, Atiahab Siddiqui S, Khan KM, Imran S, Choudhary MI (2015a) Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies. Eur J Med Chem 92:387–400

    Article  CAS  PubMed  Google Scholar 

  • Taha M, Ismail NH, Baharudin MS, Lalani S, Mehboob S, Khan KM, Yousuf S, Siddiqui S, Rahim F, Choudhary MI (2015b) Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their a-glucosidase and urease inhibition potential. Med Chem Res 24:1310–1324

    Article  CAS  Google Scholar 

  • Venkatachalam TK, Mao C, Uckun FM (2004) Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds. Bioorgan Med Chem 12:4275–4284

    Article  CAS  Google Scholar 

  • Watson RJ, Allen DR, Birch HL, Chapman GA, Gayle A, Knight LA, Oliver K, Owen DA, Thomas EJ, Tremayne N, Williams SC (2008) Development of CXCR3 antagonists. Part 3: tropenyl and homotropenyl-piperidine urea derivatives. Bioorgan Med Chem Lett 18:147–151

    Article  CAS  Google Scholar 

  • Yang W, Liu H, Li M, Wang F, Zhou W, Fan J (2012) Synthesis, structures and antibacterial activities of benzoylthiourea derivatives and their complexes with cobalt. J Inorg Biochem 116:97–105

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Sham HL, Sun M, Stoll VS, Stewart KD, Lin S, Mo H (2005) Synthesis and activity of N-acyl azacyclic urea HIV-1 protease inhibitors. Bioorgan Med Chem Lett 15:549–555

    Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge The Ministry of Agriculture (MOA) Malaysia and Universiti Teknologi MARA under MOA Grant File No. 100-RMI/MOA 16/6/2 (1/2013) and Higher Education Commission (HEC) Pakistan, under National Research Program for Universities (Project No. 20-1910) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Taha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taha, M., Ismail, N.H., Jamil, W. et al. Synthesis and evaluation of unsymmetrical heterocyclic thioureas as potent β-glucuronidase inhibitors. Med Chem Res 24, 3166–3173 (2015). https://doi.org/10.1007/s00044-015-1369-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1369-x

Keywords

Navigation