Skip to main content
Log in

Chemical constituents from Chorisia chodatii flowers and their biological activities

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

From the flowers of Chorisia chodatii Hassl. (family: Bombacaceae), seventeen compounds were isolated and identified, including: two sterols, β-sitosterol (1) and β-sitosterol 3-O-β-D-glucopyranoside (10); two furanoids, 5-hydroxymethyl furfural (3) and (3R,4R,5S)-3,4-dihydroxy-5-methyl-dihydrofuran-2-one (12); two coumarins, scopoletin (8) and aesculetin (9); four phenolic acids and esters, ethyl vanillate (4), vanillic acid (5), protocatechuic acid ethyl ester (6) and p-hydroxy benzoic acid (7); five flavonoids, kaempferol 3-O-β-D-(6″-acetyl)-glucopyranoside (13), kaempferol 3-O-β-D-(6″-E-p-coumaroyl)-glucopyranoside (14), kaempferol 3-O-β-D-glucopyranoside (15), luteolin 7-O-β-D-glucopyranoside (16) and apigenin 7-O-neohesperidoside (17), in addition to mono-octyl phthalate (2) and succinic acid (11). All the isolated metabolites were reported for the first time from this plant, and among them, compounds (3), (4), (6), (7), (12) and (13) were isolated for the first time from family Bombacaceae. Besides, this is the first report for isolation of (2) in a pure form from a natural source. These phytochemical data revealed important chemotaxonomic value and may broaden the use of this plant in future phytotherapy. Moreover, all of the obtained phytocompounds were evaluated for their DPPH free radical scavenging properties and cytotoxic activities against the human lung cancer cell line A549.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adjanohoun EJ (1988) Contribution aux etudes ethnobotaniques et floristiques en Republique Populaire du Congo. ACCT, Paris, p 605

    Google Scholar 

  • Ames BN, Gold LS, Willet WC (1995) The causes and prevention of cancer. Proc Natl Acad Sci USA 92:5258–5265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ancuceanu RV, Istudor V (2004) Pharmacologically active natural compounds for lung cancer. Altern Med Rev 9:402–419

    PubMed  Google Scholar 

  • Ashmawy AM, Azab SS, Eldahshan OA (2012) Effects of Chorisia crispiflora ethyl acetate extract on P21 and NF-κB in breast cancer cells. J Am Sci 8:965–972

    Google Scholar 

  • Bailey LH (1976) Hortus third: a concise dictionary of plants cultivated in the United States and Canada. Staff of the L.H. Bailey Hortorium, Cornell University, Ithaca

    Google Scholar 

  • Chatwal GR, Anand SK (2001) Spectroscopy (atomic and molecular), 5th edn. Himalaya Publishing House, Mumbai, pp 213–214

    Google Scholar 

  • Chen G, Dai C, Wang T, Jiang C, Han C, Song X (2010) A new flavonol from the stem-bark of Premna fulva. ARKIVOC 2:179–185

    Article  Google Scholar 

  • Costa DA, Silva DA, Cavalcanti AC, De Medeiros MAA, De Lima JT, Cavalcante JMS, Da Silva BA, Agra MD, De Souza MDF (2007) Chemical constituents from Bakeridesia pickelii Monteiro (Malvaceae) and the relaxant activity of kaempferol-3-O-β-D-(6″-E-p-coumaroyl)-glucopyranoside on guinea-pig ileum. Quím Nova 30:901–903

    Article  Google Scholar 

  • Coussio JD (1964) Isolation of rhoifolin from Chorisia species (Bombacaceae). Experientia 20:562

    Article  CAS  PubMed  Google Scholar 

  • De Caluwé E, Halamova K, Van Damme P (2010) Adansonia digitata L. A review of traditional uses, phytochemistry and pharmacology. Afrika focus 23:11–51

    Google Scholar 

  • De-Wu Z, Sheng-Jun D, Wan-Hui L, Gui-Hai L (2010) Chemical constituents from the vines of Pueraria lobata. Chin J Nat Med 8:196–198

    Article  Google Scholar 

  • Dixit P, Khan MP, Swarnkar G, Chattopadhyay N, Maurya R (2011) Osteogenic constituents from Pterospermum acerifolium Willd. flowers. Bioorg Med Chem Lett 21:4617–4621

    Article  CAS  PubMed  Google Scholar 

  • El-Alfy TS, El-Sawi SA, Sleem A, Moawad DM (2010) Investigation of flavonoidal content and biological activities of Chorisia insignis H.B.K. leaves. Aust J Basic Appl Sci 4:1334–1348

    CAS  Google Scholar 

  • Eldahshan OA (2013) Rhoifolin; a potent antiproliferative effect on cancer cell lines. Br J Pharm Res 3:46–53

    Article  Google Scholar 

  • El-Demerdash A, Dawidar AM, Keshk EM, Abdel-Mogib M (2009) Coumarins from Cynanchum actum. Rev Latinoamer Quím 37:65–69

    CAS  Google Scholar 

  • Fernandez A-M, Plaquevent J-C, Duhamel L (1997) Optically pure dihydroxy γ-alkylated γ-butyrolactones starting from L-tartaric acid: application to formal and total syntheses of natural products. J Org Chem 62:4007–4014

    Article  CAS  Google Scholar 

  • Gibbs P, Semir J (2003) A taxonomic revision of the genus Ceiba Mill. (Bombacaceae). Anales Jard Bot Madrid 60:259–300

    Google Scholar 

  • Gohari AR, Ebrahimi H, Saeidnia S, Foruzani M, Ebrahimi P, Ajani Y (2011) Flavones and flavone glycosides from Salvia macrosiphon Boiss. Iran J Pharm Res 10:247–251

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hafez SS, Abdel-Ghani AE, El-Shazly AM (2003) Pharmacognostical and antibacterial studies of Chorisia speciosa St. Hill. flower (Bombacaeae). Mans J Pharm Sci 19:40–43

    CAS  Google Scholar 

  • Hassan AA (2009) Phytochemical and biological investigation of certain plants containing pigments. Dissertation, Mansoura University, Egypt

  • Huang SC, Yen GC, Chang LW, Yen WJ, Duh PD (2003) Identification of an antioxidant, ethyl protocatechuate, in peanut seed testa. J Agric Food Chem 51:2380–2383

    Article  CAS  PubMed  Google Scholar 

  • Huxley A (1992) Dictionary of gardening: the New Royal Horticultural Society. The Macmillan Press Limited, London

    Google Scholar 

  • Ibrahim S, Nok JA, Abubakar MS, Sarkiyayi S (2012) Efficacy of di-n-octyl phthalate anti-venom isolated from Ceiba pentandra leaves extract in neutralization of Echis ocellatus venom. Res J Appl Sci Eng Technol 4:2382–2387

    CAS  Google Scholar 

  • Joshi KR, Devkota HP, Yahara S (2013) Chemical analysis of flowers of Bombax ceiba from Nepal. Nat Prod Commun 8:583–584

    CAS  Google Scholar 

  • Lee D, Lyu H, Kwak H, Jung L, Lee L, Kim D, Chung I, Kim S, Baek N (2007) Isolation of flavonoids from the fruits of Cornus kousa Burg. J Appl Biol Chem 50:144–147

    CAS  Google Scholar 

  • Ley SV, Dixon DJ, Guy RT, Palomero MA, Polara A, Rodriguez F, Sheppard TD (2004) Studies on the generation of enolate anions from butane-2,3-diacetal protected glycolic acid derivatives and subsequent highly diastereoselective coupling reactions with aldehydes and acid chlorides. Org Biomol Chem 2:3618–3627

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang Z, Zhao ZK (2009) Direct conversion of glucose and cellulose to 5-hydroxymethyl furfural in ionic liquid under microwave irradiation. Tetrahedron Lett 50:5403–5405

    Article  CAS  Google Scholar 

  • Liu R, Sun Q, Sun A, Cui J (2005) Isolation and purification of coumarin compounds from Cortex fraxinus by high-speed counter-current chromatography. J Chromatogr A 1072:195–199

    Article  CAS  PubMed  Google Scholar 

  • Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, New York, pp 4–35

    Book  Google Scholar 

  • Markham KR (1982) Techniques of flavonoids identification. Academic press, London

    Google Scholar 

  • Matsunami K, Otsuka H, Takeda Y (2011) Myrseguinosides A-E, five new glycosides from the fruits of Myrsine seguinii. Chem Pharm Bull 59:1274–1280

    Article  CAS  PubMed  Google Scholar 

  • Parker SP (1997) Dictionary of chemistry, 1st edn. McGraw-Hill, New York, p 372

    Google Scholar 

  • Paula VF, Barbosa LC, Demuner AJ, Howarth OW, Pilo-Veloso D (1996) Chemical constituents of Ochroma lagopus Swartz. Quim Nova 19:225–229

    CAS  Google Scholar 

  • Phan MG, Phan TS, Matsunami K, Otsuka H (2006) Chemical and biological evaluation on scopadulane type diterpenoids from Scoparia dulcis of Vietnamese origin. Chem Pharm Bull 54:546–549

    Article  CAS  PubMed  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidant. J Nat Prod 63:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Polterait O (1997) Antioxidants and free-radical scavengers of natural origin. Curr Org Chem 1:415–422

    Google Scholar 

  • Ravenna P (1998) On the identity, validity and actual placement in Ceiba of several Chorisia species (Bombacaceae) and description of two new South American species. Oniro 3:42–51

    Google Scholar 

  • Refaat J, Desoky SY, Ramadan MA, Kamel MS (2013) Bombacaceae: a phytochemical review. Pharm Biol 51:100–130

    Article  CAS  PubMed  Google Scholar 

  • Slimestad R, Andersen QM, Francis GW, Marston A, Hostettmann K (1995) Syringetin, kaempferol 3-O-β-D-(6″-acetyl)-glucopyranoside and other flavonols from needles of Norway spruce, Picea abies. Phytochemistry 40:1537–1542

    Article  CAS  Google Scholar 

  • Smith I (1960) Chromatographic and electrophoretic techniques. Heinman, London, pp 1–246

    Google Scholar 

  • Stahl E (1970) Thin layer chromatography, 2nd edn. Springer, New York, p 810

    Google Scholar 

  • Strassheim D, Shafer SH, Phelps SH, Williams CL (2000) Small cell lung carcinoma exhibits greater phospholipase c-beta1 expression and edelfosine resistance compared with non-small cell lung carcinoma. Cancer Res 60:2730–2736

    CAS  PubMed  Google Scholar 

  • Xu Y, Fan W, Qian M (2007) Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction. J Agric Food Chem 55:3051–3057

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi I, Mega N, Sanada H (1993) Components of the gel of Aloe vera (L.) Burm. F. Biosci Biotech Biochem 57:1350–1352

    Article  CAS  Google Scholar 

  • Yu-Bo L, Xiang-Rong C, Jiang-Jiang Q, Shi-Kai Y, Hui-Zi J, Wei-Dong Z (2011) Chemical constituents of Toona ciliata var. pubescens. Chin J Nat Med 9:115–119

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for access to the superconducting NMR instrument and ESI-MS at the Analytical Center of Molecular Medicine, the Analysis Center of Life Science and the Natural Science Center for Basic Research and Development of the Graduate School of Biomedical and Health Sciences, Hiroshima University.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Refaat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3439 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Refaat, J., Samy, M.N., Desoukey, S.Y. et al. Chemical constituents from Chorisia chodatii flowers and their biological activities. Med Chem Res 24, 2939–2949 (2015). https://doi.org/10.1007/s00044-015-1342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1342-8

Keywords

Navigation