Skip to main content
Log in

In silico docking studies of non-azadirachtin limonoids against ecdysone receptor of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae)

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Although specific binding of 20-hydroxyecdysone (20E) and its analogs (ecdysteroids) to the ecdysone receptor ligand-binding domain (EcR-LBD) in insects has been well documented, information on the EcR-ligand binding in Helicoverpa armigera is limited. Hence, an attempt has been made to screen effective natural plant-based agonists from a library of 25 non-azadirachtin neem limonoids and was compared with the commercially available insecticide, tebufenozide, through in silico approach. Results indicated that six compounds, namely nimbolide, azadirone, nimolinone, meliacinol, nimbocinol, azadiradione, efficiently docked with the active site of H. armigera EcR-LBD. The binding energies of top-ranked six molecules ranged from −10.54 to −12.22 kcal/mol, which was superior to the third-generation insect growth regulator (IGR), tebufenozide RH5992. Two factors are especially important in binding: (1) the residues Cys 508 and Asn 504, which are the most common in hydrogen-bonding interactions and (2) hydrophobic pocket residues—Asn 504, Met 507, Val 416, Tyr 408 and Thr 343. We also recognized one aromatic ring, 3–7 vicinal acceptors and 1–3 distal hydrophobic groups as minimum pharmacophoric feature. A significant correlation coefficient of 0.6823 was observed supporting positively the docking studies. These data could help in the application of natural compounds as alternatives to chemicals in pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alland C, Moreews F, Boens D, Carpentier M, Chiusa S, Lonquety M, Renault N, Wong Y, Cantalloube H, Chomilier J, Hochez J, Pothier J, Villoutreix BO, Zagury JF, Tufféry P (2005) RPBS: a web resource for structural bioinformatics. Nucleic Acids Res 33:44–49

    Article  Google Scholar 

  • Berman HM, Henrick K, Nakamura H, Markley J, Bourne PE, Westbrook J (2007) Realism about PDB. Nat Biotechnol 25:845–846

    Article  CAS  PubMed  Google Scholar 

  • Bolton EE, Wang Y, Thiessen PA, Bryant SH (2008) Integrated platform of small molecules and biological activities. Annu Rep Comput Chem 4:217–241

    CAS  Google Scholar 

  • Carlson GR (2000) Tebufenozide: a novel caterpillar control agent with unusually high target selectivity. Green chemical syntheses and processes. In: ACS symposium series. pp 8–17. doi:10.1021/bk-2000-0767.ch002

  • Cohen E, Quistad GB, Casida JE (1996) Cytotoxicity of nimbolide, epoxyazadiradione and other limonoids from neem insecticide. Life Sci 58:1075–1081

    Article  CAS  PubMed  Google Scholar 

  • Dhadialla TS, Carlson GR, Le DP (1998) New insecticides with ecdysteroidal and juvenile hormone activity. Annu Rev Entomol 43:545–569

    Article  CAS  PubMed  Google Scholar 

  • Fitt GP (1989) The ecology of Heliothis in relation to agroecosystems. Annu Rev Entomol 34:17–53

    Article  Google Scholar 

  • Gasteiger J, Rudolph C, Sadowski J (1990) Automatic generation of 3D-atomic coordinates for organic molecules. Tetrahedron Comput Methodol 3:537–547

    Article  CAS  Google Scholar 

  • Graham LD (2002) Ecdysone-controlled expression of transgenes. Expert Opin Biol Ther 2:525–535

    Article  CAS  PubMed  Google Scholar 

  • Graham LD, Johnson WM, Pawlak-Skrzecz A, Eaton RE, Bliese M, Howell L, Hannan GN, Hill RJ (2007a) Ligand binding by recombinant domains from insect ecdysone receptors. Insect Biochem Mol Biol 37:611–626

    Article  CAS  PubMed  Google Scholar 

  • Graham LD, Pilling PA, Eaton RE, Gorman JJ, Braybrook C, Hannan GN, Pawlak-Skrzecz A, Noyce L, Lovrecz GO, Lu L, Hill RJ (2007b) Purification and characterization of recombinant ligand-binding domains from the ecdysone receptors of four pest insects. Protein Expr Purif 53:309–324

    Article  CAS  PubMed  Google Scholar 

  • Gunning RV, Easton CS (1994) Endosulphon resistance in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in Australia. J Aust Entomol Soc 33:9–12

    Article  Google Scholar 

  • Halgren TA (1996) Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data and empirical rules. J Comput Chem 17:616–641

    Article  CAS  Google Scholar 

  • Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  PubMed  Google Scholar 

  • Iwema T, Chaumot A, Studer RA, Robinson-Rechavi M, Billas IM, Moras D, Laudet V, Bonneton F (2009) Structural and evolutionary innovation of the heterodimerization interface between USP and the ecdysone receptor EcR in insects. Mol Biol Evol 26:753–768

    Article  CAS  PubMed  Google Scholar 

  • Jayachandran B, Hussain M, Asgari S (2013) Regulation of Helicoverpa armigera ecdysone receptor by miR-14 and its potential link to baculovirus infection. J Invertebr Pathol 114:151–157

    Article  CAS  PubMed  Google Scholar 

  • Kasuya A, Sawada Y, Tsukamoto Y, Tanaka K, Toya T, Yanagi M (2003) Binding mode of ecdysone agonists to the receptor: comparative modeling and docking studies. J Mol Model 9:58–65

    CAS  PubMed  Google Scholar 

  • Koul O, Shankar JS, Kapil RS (1996) The effect of neem allelochemicals on nutritional physiology of larval Spodoptera litura. Entomol Exp Appl 79:43–50

    Article  CAS  Google Scholar 

  • Koul O, Multani JS, Daniewski WM, Singh G, Berlozecki S (2003) 6β-Hydroxygedunin from Azadirachta indica its potentiation effects with some non-azadirachtin limonoids in neem against lepidopteran larvae. J Agric Food Chem 51:2937–2942

    Article  CAS  PubMed  Google Scholar 

  • Koul O, Multani JS, Goomber S, Daniewski WM, Berlozecki S (2004) Activity of some non-azadirachtin limonoids from against Azadirachta indica lepidopteran larvae. Aust J Entomol 43:78–84

    Article  Google Scholar 

  • Kumar NS, Murugan K, Zhang W (2008) Additive interaction of Helicoverpa armigera Nucleopolyhedro virus and Azadirachtin. Biocontrol 53:869–880

    Article  Google Scholar 

  • Lammers JW, Macleod A (2007) Report of a pest risk analysis: Helicoverpa armigera (Hübner, 1808) http://www.fera.defra.gov.uk/plants/plantHealth/pestsDiseases/documents/helicoverpa.pdf. Accessed 10 Aug 2014

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Murugan K, Jeyabalan D, Kumar NS, Babu R, Sivaramakrishnan S, Nathan SS (1998) Antifeedant and growth-inhibitory properties of neem limonoids against the cotton bollworm, Helicoverpa armigera (Hübner). Int J Trop Insect Sci 18:157–162

    Article  CAS  Google Scholar 

  • Nagata S, Maruyama T, Ohira T, Nagasawa H (2005) Cloning and characterization of ecdysone receptor and ultraspiracle cDNAs from Spodoptera litura. Ann N Y Acad Sci 1040:417–419

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa Y (2005) Nonsteroidal ecdysone agonists. Vitam Horm 73:131–173

    CAS  PubMed  Google Scholar 

  • Nakagawa Y, Henrich VC (2009) Arthropods nuclear receptors and their role in moulting. FEBS J 276:6128–6157

    Article  CAS  PubMed  Google Scholar 

  • Nanduri S, Thunuguntla SS, Nyavanandi VK, Kasu S, Kumar PM, Ram PS, Rajagopal S, Kumar RA, Devi DS, Rajagopalan R, Venkateswarlu A (2003) Biological investigation and structure-activity relationship studies on azadirone from Azadirachta indica A Juss. Bioorg Med Chem Lett 13:4111–4115

    Article  CAS  PubMed  Google Scholar 

  • Oro AE, McKeown M, Evans RM (1990) Relationship between the product of the Drosophila ultraspiracle locus and the vertebrate retinoid X receptor. Nature 347:298–301

    Article  CAS  PubMed  Google Scholar 

  • Palli SR, Hormann RE, Schlattner U, Lezzi M (2005) Ecdysteroid receptors and their applications in agriculture and medicine. Vitam Horm 73:59–100

    CAS  PubMed  Google Scholar 

  • Praveena A, Sanjayan KP (2011) Inhibition of acetylcholinesterase in three insects of economic importance by linalool, a monoterpene phytochemical. In: Dunston PA (ed) Insect pest management, a current scenario, entomology research unit. St. Xavier’s College, Palayamkottai, pp 340–345

    Google Scholar 

  • Retnakaran A, Krell P, Feng Q, Arif B (2003) Ecdysone agonists: mechanism and importance in controlling insect pests of agriculture and forestry. Arch Insect Biochem Physiol 54:187–199

    Article  CAS  PubMed  Google Scholar 

  • Rochanakij S, Thebtaranonth Y, Yenjai C, Yuthavong Y (1985) Nimbolide, a constituent of Azadirachta indica, inhibits Plosmodium falciparum in culture. Southeast Asian J Trop Med Public Health 16:66–72

    CAS  PubMed  Google Scholar 

  • Roy A, Saraf S (2006) Limonoids: overview of significant bioactive triterpenes distributed in plants kingdom. Biol Pharm Bull 29:191–201

    Article  CAS  PubMed  Google Scholar 

  • Setzer WN, Setzer MC (2003) Plant-derived triterpenoids as potential antineoplastic agents. Mini Rev Med Chem 3:540–556

    Article  CAS  PubMed  Google Scholar 

  • Sharma HC (2001) Cotton bollworm/legume pod borer, Helicoverpa armigera (Hubner) (Noctuidae: Lepidoptera): biology and management. Crop Protection Compendium, CABI Oxon

    Google Scholar 

  • Srinivas R, Udikeri SS, Jayalakshmi SK, Sreeramulu K (2004) Identification of factors responsible for insecticide resistance in Helicoverpa armigera. Comp Biochem Physiol C Toxicol Pharmacol 137:261–269

    Article  CAS  PubMed  Google Scholar 

  • Tay WT, Soria MF, Walsh T, Thomazoni D, Silvie P, Behere GT, Anderson C, Downes S (2013) A brave new world for an old world pest: Helicoverpa armigera (Lepidoptera: Noctuidae) in Brazil. PLoS One. doi:10.1371/journal.pone.0080134

    Google Scholar 

  • Thomson SA, Baldwin WS, Wangl YH, Kwon G, LeBlanc GA (2009) Annotation, phylogenetics, and expression of the nuclear receptors in Daphnia pulex. BMC Genomics 10:1–14

    Article  Google Scholar 

  • Thummel CS (1995) From embryogenesis to metamorphosis: the regulation and function of Drosophila nuclear receptor superfamily members. Cell 83:871–877

    Article  CAS  PubMed  Google Scholar 

  • Tice CM (2001) Selecting the right compounds for screening: does Lipinski’s Rule of 5 for pharmaceuticals apply to agrochemicals? Pest Manag Sci 57:3–16

    Article  CAS  PubMed  Google Scholar 

  • Tohidi-Esfahani D, Lawrence MC, Graham LD, Hannan GN, Simpson AM, Hill RJ (2011) Isoforms of the heteropteran Nezara viridula ecdysone receptor: protein characterisation, RH5992 insecticide binding and homology modelling. Pest Manag Sci 67:1457–1467

    Article  CAS  PubMed  Google Scholar 

  • Wing KD, Slawecki RA, Carlson GR (1988) RH-5849, nonsteroidal ecdysone agonist: effects on larval Lepidoptera. Science 241:470–472

    Article  CAS  PubMed  Google Scholar 

  • Wolf LK (2009) Digital briefs: new software and websites for the chemical enterprise. C&EN 87:31

  • Wurtz JM, Guillot B, Fagart J, Moras D, Tietjen K, Schindler M (2000) A new model for 20-hydroxyecdysone and dibenzoylhydrazine binding: a homology modeling and docking approach. Protein Sci 9:1073–1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Li Y, Wu Y (2013) Current status of insecticide resistance in Helicoverpa armigera after 15 years of Bt cotton planting in China. J Econ Entomol 106:375–381

    Article  CAS  PubMed  Google Scholar 

  • Zheng WW, Yang DT, Wang JX, Song QS, Gilbert LI, Zhao XF (2010) Hsc70 binds to ultraspiracle resulting in the upregulation of 20-hydroxyecdsone-responsive genes in Helicoverpa armigera. Mol Cell Endocrinol 315:282–291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to the Department of Biotechnology, New Delhi, Govt. of India for their financial assistance in the form of Research Fellowship to RPY and KSI and for the Bioinformatics Infrastructure Facility (No. BT/BI/12/060/2012 (NERBIF-MUA).

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nachimuthu Senthil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, R.P., Syed Ibrahim, K., Gurusubramanian, G. et al. In silico docking studies of non-azadirachtin limonoids against ecdysone receptor of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Med Chem Res 24, 2621–2631 (2015). https://doi.org/10.1007/s00044-015-1320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-015-1320-1

Keywords

Navigation