Skip to main content

Advertisement

Log in

Synthesis and antifungal activity of novel 7-O-substituted pyridyl-4-methyl coumarin derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A new series of 7-O-substituted pyridyl-4-methyl coumarin derivatives were synthesized and characterized based on their spectral data. All the target compounds were evaluated for their in vitro antifungal activity against eight important fungal pathogens. This study showed that the introduction of the substituted pyridyl moiety at the 7-hydroxy position of coumarin could enhance the antifungal activities. It also indicated that a bulky substituent was not beneficial to the antifungal activity of those coumarin derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  • Alvey L, Prado S, Saint-Joanis B, Michel S, Koch M, Cole ST, Tillequin F, Janin YL (2009) Diversity-oriented synthesis of furo [3,2-f] chromanes with antimycobacterial activity. Eur J Med Chem 44(6):2497–2505

    Article  PubMed  CAS  Google Scholar 

  • Borges F, Roleira F, Milhazes N, Santana L, Uriarte E (2005) Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem 12(8):887–916

    Article  PubMed  CAS  Google Scholar 

  • Chopra I, Schofield C, Everett M, O’Neill A, Miller K, Wilcox M, Frere JM, Dawson M, Czapiewski L, Urleb U, Courvalin P (2008) Lancet infectious diseases treatment of healthcare associated infections caused by gram negative bacteria a consensus statement. Lancet Infect Dis 8(2):133–139

    Article  PubMed  Google Scholar 

  • Emmanuel-Giota AA, Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN (2001) Synthesis and biological evaluation of several 3-(coumarin-4-yl) tetrahydroisoxazole and 3-(coumarin-4-yl) dihydropyrazole derivatives. J Heterocycl Chem 38(3):717–722

    Article  CAS  Google Scholar 

  • Fridkin SK, Jarvis WR (1996) Epidemiology of nosocomial fungal infections. Clin Microbiol Rev 9(4):499–511

    PubMed  CAS  Google Scholar 

  • Ghate M, Manohar D, Kulkarni V, Shobha R, Kattimani SY (2003) Synthesis of vanillin ethers from 4-(bromomethyl) coumarins as anti-inflammatory agents. Eur J Med Chem 38(3):297–302

    Article  PubMed  CAS  Google Scholar 

  • Jeso V, Nicolaou KC (2009) Total synthesis of tovophyllin B. Tetrahedron Lett 50(11):1161–1163

    Article  PubMed  CAS  Google Scholar 

  • Jeu L, Piacenti FJ, Lyakhovetskiy AG, Fung HB (2003) Voriconazole. Clin Ther 25(5):1321–1381

    Article  PubMed  CAS  Google Scholar 

  • Keri RS, Hosamani KM, Shingalapur RV, Reddy HR (2009) 2-Azetidinone derivatives: design, synthesis, in vitro anti-microbial, cytotoxic activities and DNA cleavage study. Eur J Med Chem 44(12):5123–5130

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni MV, Kulkarni GM, Lin CH, Sun CM (2006) Recent advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Curr Med Chem 13(23):2795–2818

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Sharma S, Gupta LP, Ahmad P, Srivastava SP, Rahuja N, Tamrakar AK, Srivastava AK (2012) Synthesis of propiophenone derivatives as new class of antidiabetic agents reducing body weight in db/db mice. Bioorg Med Chem 20(6):2172–2179

    Article  PubMed  CAS  Google Scholar 

  • Lepesheva GI, Zaitseva NG, Nes WD, Zhou W, Arase M, Liu J, Hill GC, Waterman MR (2006) CYP51 from Trypanosoma cruzi: a phyla-specific residue in the B′ helix defines substrate preferences of sterol 14α-demethylase. J Biol Chem 281(6):3577–3585

    Article  PubMed  CAS  Google Scholar 

  • National Committee for Clinical Laboratory Standards (2002) Reference method for broth dilution antifungal susceptibility testing of yeasts approved standard document M27–A2. National Committee for Clinical Laboratory Standards, Wayne

    Google Scholar 

  • Okaniwa M, Hirose M, Imada T, Ohashi T, Hayashi Y, Miyazaki T, Arita T, Yabuki M, Kakoi K, Kato J, Takagi T, Kawamoto T, Yao S, Sumita A, Tsutsumi S, Tottori T, Oki H, Sang BC, Yano J, Aertgeerts K, Yoshida S, Ishikawa T (2012) Design and synthesis of novel DFG-out RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors. 1. Exploration of [5,6]-fused bicyclic scaffolds. J Med Chem 55(7):3452–3578

    Article  PubMed  CAS  Google Scholar 

  • Padmaja A, Payani T, Dinneswara RG, Padmavathi V (2009) Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives. Eur J Med Chem 44(11):4557–4566

    Article  PubMed  CAS  Google Scholar 

  • Padmaja A, Rajasekhar C, Muralikrishna A, Padmavathi V (2011) Synthesis and antioxidant activity of oxazolyl/thiazolylsulfonylmethyl pyrazoles and isoxazoles. Eur J Med Chem 46(10):5034–5038

    Article  PubMed  CAS  Google Scholar 

  • Raghu M, Nagaraj A, Reddy CS (2009) ChemInform abstract: synthesis and in vitro study of novel bis-[3-(2-arylmethylidenimino-1,3-thiazol-4-yl)-4-hydroxy-2H-chromen-2-one-6-yl]methane and bis-[3-(2-arylidenhydrazo-1,3-thiazol-4-yl)-4-hydroxy-2H- chromen-2-one-6-yl]methane as potential antimicrobial agents. J Heterocycl Chem 40(36):261–267

    Article  Google Scholar 

  • Riveiro ME, Kimpe ND, Moglioni A, Vazquez R, Monczor F, Shayo C, Davio C (2010) Coumarins: old compounds with novel promising therapeutic perspectives. Curr Med Chem 17(13):1325–1338

    Article  PubMed  CAS  Google Scholar 

  • Ronad PM, Noolvi MN, Sapkal S, Dharbhamulla S, Maddi VS (2010) Synthesis and antimicrobial activity of 7-(2-substituted phenylthiazolidinyl) -benzopyran-2-one derivatives. Eur J Med Chem 45(1):85–89

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Zhou CH (2011) Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg Med Chem Lett 21(3):956–960

    Article  PubMed  CAS  Google Scholar 

  • Wingard JR, Leather H (2004) A new era of antifungal therapy. Biol Blood Marrow Transplant 10(2):73–90

    Article  PubMed  CAS  Google Scholar 

  • Wu L, Wang X, Xu W, Farzaneh F, Xu R (2009) The structure and pharmacological functions of coumarins and their derivatives. Curr Med Chem 16(32):4236–4260

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Takeuchi Y, Cosentino LM, Lee KH (1999) Anti-AIDS agents. 37. Synthesis and structure–activity relationships of (3′R,4′R)-(+)-cis-khellactone derivatives as novel potent anti-HIV agents. J Med Chem 42(14):2662–2672

    Article  PubMed  CAS  Google Scholar 

  • Xu ZQ, Pupek K, Suling WJ, Enache L, Flavin MT (2006) Pyranocoumarin, a novel anti-TB pharmacophore: synthesis and biological evaluation against mycobacterium tuberculosis. Bioorg Med Chem 14(13):4610–4626

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Pharmaceutical Education research project of Chinese Association of Higher Medical Education Professional Committee (Grant No. ZD201220), the Creativity and Innovation Training Program of Second Military Medical University (Grant No. ZD2008008), and the Shanghai Leading Academic Discipline Project (No. B906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyan Sun.

Additional information

Xiaoyun Chai and Shichong Yu contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chai, X., Yu, S., Wang, X. et al. Synthesis and antifungal activity of novel 7-O-substituted pyridyl-4-methyl coumarin derivatives. Med Chem Res 22, 4654–4662 (2013). https://doi.org/10.1007/s00044-013-0470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0470-2

Keywords

Navigation