Skip to main content

Advertisement

Log in

Synthesis of new quinoline-2-pyrazoline-based thiazolinone derivatives as potential antimicrobial agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of 2-(5-(2-chloro-6-methylquinolin-3-yl)-3-(aryl)-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)ones (4a–l) were synthesized and characterized by IR, 1H NMR, 13C NMR, and mass spectra. All the synthesized compounds were tested for their in vitro antimicrobial activity against Escherichia coli (MTCC 443), Pseudomonas aeruginosa (MTCC 1688), Staphylococcus aureus (MTCC 96), Streptococcus pyogenes (MTCC 442), Candida albicans (MTCC 227), Aspergillus niger (MTCC 282), and Aspergillus clavatus (MTCC 1323) by serial broth dilution. Compounds 4e, 4f, 4g, 4i, 4j, and 4l were the most distinctive derivatives identified in present study because of their remarkable in vitro antimicrobial potency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

References

  • Ahmed N, Brahmbhatt KG, Sabde S, Mitra D, Singh IP, Bhutani KK (2010) Synthesis and anti-HIV activity of alkylated quinoline 2,4-diols. Bioorg Med Chem 18:2872–2879. doi:10.1016/j.bmc.2010.03.015

    Article  PubMed  CAS  Google Scholar 

  • Al-Bayati FA, Al-Mola HF (2008) Antibacterial and antifungal activities of different parts of Tribulus terrestris L. growing in Iraq. J Zhenjiang 9:154–159. doi:10.1631/jzus.B0720251

    Google Scholar 

  • Baraldi PG, Bovero A, Fruttarolo F, Romagnoli R, Tabrizi MA, Preti D, Varani K, Borea PA, Moorman AR (2003) New strategies for the synthesis of A3 adenosine receptor antagonists. Bioorg Med Chem 11:4161–4169. doi:10.1016/S0968-0896(03)00484-X

    Article  PubMed  CAS  Google Scholar 

  • Barrett CT, Barrett JF (2003) Antibacterials: are the new entries enough to deal with the emerging resistance problems? Curr Opin Biotechnol 14:621–626. doi:10.1016/j.copbio.2003.10.003

    Article  PubMed  CAS  Google Scholar 

  • Barsoum FF, Hosni HM, Girgis AS (2006) Novel bis(1-acyl-2-pyrazolines) of potential anti-inflammatory and molluscicidal properties. Bioorg Med Chem 14:3929–3937. doi:10.1016/j.bmc.2006.01.042

    Article  PubMed  CAS  Google Scholar 

  • Bekhit AA, El-Sayed OA, Aboulmagd E, Young PJI (2004) Tetrazolo[1,5-a]quinoline as a potential promising new scaffold for the synthesis of novel anti-inflammatory and antibacterial agents. Eur J Med Chem 39:249–255. doi:10.1016/j.ejmech.2003.12.005

    Article  PubMed  CAS  Google Scholar 

  • Brad S, John HP, Eric PB, Loren GM, John EE (2004) Trends in antimicrobial drug development: implications for the future. Clin Infect Dis 38:1279–1286. doi:10.1086/420937

    Article  Google Scholar 

  • Cohen ML (2000) Changing patterns of infectious disease. Nature 406:762–767. doi:10.1038/35021206

    Article  PubMed  CAS  Google Scholar 

  • Desai NC, Maheta AS, Rajpara KM, Joshi VV, Vaghani HV, Satodiya HM (2011) Green synthesis of novel quinoline based imidazole derivatives and evaluation of their antimicrobial activity. J Saudi Chem Soc. doi:10.1016/j.jscs.2011.11.021

    Google Scholar 

  • Desai NC, Rajpara KM, Joshi VV (2012a) Synthesis and characterization of some new quinoline based derivatives endowed with broad spectrum antimicrobial potency. Bioorg Med Chem Lett 15:6871–6875. doi:10.1016/j.bmcl.2012.09.039

    Article  Google Scholar 

  • Desai NC, Joshi VV, Rajpara KM, Vaghani HV, Satodiya HM (2012b) Microwave assisted synthesis and antimicrobial screening of new imidazole derivatives bearing 4-thiazolidinone nucleus. Med Chem Res. doi:10.1007/s00044-012-0190-z

    Google Scholar 

  • Desai NC, Rajpara KM, Joshi VV, Vaghani HV, Satodiya HM (2012c) Synthesis of promising antimicrobial agents—a novel series of N-(4-(2,6-dichloroquinolin-3-yl)-6-(aryl)pyrimidin-2-yl)-2-morpholinoacetamides. Med Chem Res. doi:10.1007/s00044-012-0121-z

    Google Scholar 

  • Desai NC, Rajpara KM, Joshi VV, Vaghani HV, Satodiya HM (2012d) Synthesis and characterization of some new thiazole based thiazolidinone derivatives as potent antimicrobial and antimycobacterial agents. Anti-Infective Agents 10:75–86

    CAS  Google Scholar 

  • Desai NC, Joshi VV, Rajpara KM, Vaghani HV, Satodiya HM (2012e) Facile synthesis of novel fluorine containing pyrazole based thiazole derivatives and evaluation of antimicrobial activity. J Fluor Chem 142:67–78. doi:10.1016/j.jfluchem.2012.06.021

    Article  CAS  Google Scholar 

  • Desai NC, Rajpara KM, Joshi VV (2012f) Microwave induced synthesis of fluorobenzamides containing thiazole and thiazolidine as promising antimicrobial analogs. J Fluor Chem. doi: 10.1016/j.jfluchem.2012.10.012

  • Elgazwy ASH (2008) Synthesis and characterization of pyrido[1,2-a]quinoline palladacycles. Monatsh Chem 139:1285–1297. doi:10.1007/s00706-008-0932-2

    Article  Google Scholar 

  • Finegold SM, Garrod L (1995) Bailey and Scott’s diagnostic microbiology, 8th edn., chap 13C.V. Mosby, Toronto, pp 171–193

    Google Scholar 

  • Jeong TS, Kim KS, An SJ, Cho KH, Lee S, Lee WS (2004a) Novel 3,5-diaryl pyrazolines as human acyl-CoA: cholesterol acyltransferase inhibitors. Bioorg Med Chem Lett 14:2715–2717. doi:10.1016/j.bmcl.2004.03.079

    Article  PubMed  CAS  Google Scholar 

  • Jeong TS, Kim KS, Kim JR, Cho KH, Lee S, Lee WS (2004b) Novel 3,5-diaryl pyrazolines and pyrazole as low-density lipoprotein (LDL) oxidation inhibitor. Bioorg Med Chem Lett 14:2719–2723. doi:10.1016/j.bmcl.2004.03.072

    Article  PubMed  CAS  Google Scholar 

  • Krainets IV, Amer M, Bezuglyi PA, Gorokhova OV, Sidorenko LV, Turov AV (2002) 4-Hydroxy-2-quinolones. 56. 4-(Adamant-1-yl)thiazolyl-2-amides of 1-R-4-hydroxy-2-oxoquinoline-3-carboxylic acids as potential antitubercular agents. Chem Heterocycl Compd 38:571–575

    Article  Google Scholar 

  • Krchnak V, Holladay MW (2002) Solid phase heterocyclic chemistry. Chem Rev 102:61–92. doi:10.1021/cr010123h

    Article  PubMed  CAS  Google Scholar 

  • Lilienkampf A, Mao J, Wan B, Wang Y, Franzblau SG, Kozikowski AP (2009) Structure—activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculosis. J Med Chem 52:2109–2118. doi:10.1021/jm900003c

    Article  PubMed  CAS  Google Scholar 

  • Maguire MP, Sheets KR, McVety K, Spada AP, Zilberstein A (1994) A new series of PDGF receptor Tyrosine Kinase inhibitors: 3-substituted quinoline derivatives. J Med Chem 37:2129–2137. doi:10.1021/jm00040a003

    Article  PubMed  CAS  Google Scholar 

  • Meth-Cohn O (1993) The synthesis of pyridines, quinolines and other related systems by the Vilsmeier and the reverse Vilsmeier method. Heterocycles 35:539–557

    Article  CAS  Google Scholar 

  • Muruganantham N, Sivakumar R, Anbalagan N, Gunasekaran V, Leonard JT (2004) Synthesis, anticonvulsant and antihypertensive activities of 8-substituted quinoline derivatives. Biol Pharm Bull 27:1683–1687. doi:10.1248/bpb.27.1683

    Article  PubMed  CAS  Google Scholar 

  • Nasveld P, Kitchener S (2005) Treatment of acute vivax malaria with tafenoquine. Trans R Soc Trop Med Hyg 99:2–5. doi:10.1016/j.trstmh.2004.01.013

    Article  PubMed  Google Scholar 

  • Palaska E, Erol D, Demirdamar R (1996) Synthesis and antidepressant activities of some 1,3,5-triphenyl-2-pyrazolines. Eur J Med Chem 31:43–47. doi:10.1016/S0223-5234(96)80005-5

    Article  CAS  Google Scholar 

  • Shi A, Nguyen TA, Battina SK, Rana S, Takemoto DJ, Chiang PK, Hua DH (2008) Synthesis and anti-breast cancer activities of substituted quinolines. Bioorg Med Chem Lett 18:3364–3368. doi:10.1016/j.bmcl.2008.04.024

    Article  PubMed  CAS  Google Scholar 

  • Soni N, Pande K, Kalsi R, Gupta TK, Parmer SS, Barthwal JP (1987) Inhibition of rat brain monoamine oxidase and succinic dehydrogenase by anticonvulsant pyrazolines. Res Commun Chem Pathol Pharmacol 56:129–132

    PubMed  CAS  Google Scholar 

  • Turan-Zitouni G, Chevallet P, Kiliç FS, Erol K (2000) Synthesis of some thiazolyl-pyrazoline derivatives and preliminary investigation of their hypotensive activity. Eur J Med Chem 35:635–641. doi:10.1016/S0223-5234(00)00152-5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Head, Department of Chemistry, Mahatma Gandhi Campus, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, for providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. C. Desai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, N.C., Joshi, V.V. & Rajpara, K.M. Synthesis of new quinoline-2-pyrazoline-based thiazolinone derivatives as potential antimicrobial agents. Med Chem Res 22, 3663–3674 (2013). https://doi.org/10.1007/s00044-012-0377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0377-3

Keywords

Navigation