Skip to main content
Log in

Sobolev Orthogonal Polynomials on the Sierpinski Gasket

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We develop a theory of Sobolev orthogonal polynomials on the Sierpiński gasket (\(SG\)), which is a fractal set that can be viewed as a limit of a sequence of finite graphs. These orthogonal polynomials arise through the Gram–Schmidt orthogonalisation process applied on the set of monomials on \(SG\) using several notions of a Sobolev inner products. After establishing some recurrence relations for these orthogonal polynomials, we give estimates for their \(L^2\), \(L^\infty \), and Sobolev norms, and study their asymptotic behavior. Finally, we study the properties of zero sets of polynomials and develop fast computational tools to explore applications to quadrature and interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Althammer, P.: Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation. J. Reine Angew. Math. 211, 192–204 (1962)

    MathSciNet  MATH  Google Scholar 

  2. Ben-Gal, S., Shaw-Krauss, A., Strichartz, R.S., Young, C.: Calculus on the Sierpinski gasket II: point singularities, eigenfunctions, and normal derivatives of the heat kernel. Trans. Am. Math. Soc. 358, 3883–3936 (2006)

    Article  MathSciNet  Google Scholar 

  3. Cohen Jr., E.A.: Zero distribution and behavior of orthogonal polynomials in the Sobolev space \({W}^{1,2}[-1,1]\). SIAM J. Math. Anal. 105–116 (1975)

  4. Kigami, J.: Analysis on Fractals, vol. 143. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  5. Mairhuber, J.C.: On haar’s theorem concerning chebychev approximation problems having unique solutions. Proc. Am. Math. Soc. 7, 609–615 (1956)

    MathSciNet  MATH  Google Scholar 

  6. Marcellán, F., Moreno-Balcázar, J.J.: What is ... a Sobolev orthogonal polynomial? Not. Am. Math. Soc. 64, 873–875 (2017)

    Article  MathSciNet  Google Scholar 

  7. Marcellan, F., Xu, Y.: On Sobolev orthogonal polynomials. Expositiones Mathematicae 33, 308–352 (2015)

    Article  MathSciNet  Google Scholar 

  8. Meijer, H.G.: A short history of orthogonal polynomials in a Sobolev space I. the non-discrete case. Niew Arch . voor Wiskunde, 14, 93–112 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Needleman, J., Strichartz, R.S., Teplyaev, A., Yung, P.-L.: Calculus on the Sierpinski gasket I: polynomials, exponentials and power series. J. Funct. Anal. 215, 290–340 (2004)

    Article  MathSciNet  Google Scholar 

  10. Okoudjou, K.A., Strichartz, R.S., Tuley, E.K.: Orthogonal polynomials on the sierpinski gasket. Constr. Approx. 37, 311–340 (2013)

    Article  MathSciNet  Google Scholar 

  11. Pesenson, I.: Variational splines and Paley–Wiener spaces on combinatorial graphs. Constr. Approx. 29, 1–21 (2009)

    Article  MathSciNet  Google Scholar 

  12. Schäfke, F.W.: Zu den Orthogonalpolynomen von Althammer. J. Reine Angew. Math. 252, 195–199 (1972)

    MathSciNet  MATH  Google Scholar 

  13. Strichartz, R.S.: Function spaces on fractals. J. Funct. Anal. 198, 43–83 (2003)

    Article  MathSciNet  Google Scholar 

  14. Strichartz, R.S.: Differential Equations on Fractals: A Tutorial. Princeton University Press, Princeton (2006)

    Book  Google Scholar 

  15. Strichartz, R.S., Usher, M.: Splines on fractals. Math. Proc. Camb. Philos. Soc. 129, 331–360 (2000)

    Article  MathSciNet  Google Scholar 

  16. Sule, S., Venkat, S.: Numerics for SOB-OPs. https://github.com/s769/op_on_sg (2020). Online; Accessed 29 Dec 2020

  17. Ward, J.P., Narcowich, F.J., Ward, J.D.: Interpolating splines on graphs for data science applications. Appl. Comput. Harmon. Anal. 49, 540–557 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Kasso A. Okoudjou was partially supported by the U. S. Army Research Office grant W911NF1910366, and an MLK visiting professorship at MIT. Jiang, Lan, Sule, and Venkat would like to acknowledge the REU at Cornell University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasso A. Okoudjou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Q., Lan, T., Okoudjou, K.A. et al. Sobolev Orthogonal Polynomials on the Sierpinski Gasket. J Fourier Anal Appl 27, 38 (2021). https://doi.org/10.1007/s00041-021-09819-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09819-0

Keywords

Mathematics Subject Classification

Navigation