Skip to main content
Log in

Higher Order Fractional Leibniz Rule

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The fractional Leibniz rule is generalized by the Coifman–Meyer estimate. It is shown that the arbitrary redistribution of fractional derivatives for higher order with the corresponding correction terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bateman, H., Erdelyi, A.: Higher Transcendental Functions, vol. 1 and 2. Mcgraw-Hill Company, Inc, New York (1953)

    MATH  Google Scholar 

  2. Bényi, Á., Oh, T.: On a class of bilinear pseudodifferential operators. J. Funct. Spaces Appl. (2013). Art. ID 560976, 5

  3. Bényi, Á., Oh, T.: Smoothing of commutators for a Hörmander class of bilinear pseudodifferential operators. J. Fourier Anal. Appl. 20, 282–300 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernicot, F., Maldonado, D., Moen, K., Naibo, V.: Bilinear Sobolev–Poincaré inequalities and Leibniz-type rules. J. Geom. Anal. 24, 1144–1180 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bona, J.L., Ponce, G., Saut, J.C., Sparber, C.: Dispersive blow-up for nonlinear Schrödinger equations revisited. J. Math. Pures Appl. (9) 102, 782–811 (2014)

  6. Bourgain, J., Li, D.: On an endpoint Kato-Ponce inequality. Differ. Integr. Equ. 27, 1037–1072 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Calderón, A.-P.: Commutators of singular integral operators. Proc. Natl. Acad. Sci. USA 53, 1092–1099 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christ, M.F., Weinstein, M.I.: Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Coifman, R.R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 212, 315–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coifman, R.R., Meyer, Y.: Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28(xi) 177–202 (1978)

  11. Coifman, R.R., Meyer, Y.: Ondelettes et opérateurs, III, Hermann. Paris, France (1991)

  12. Cruz-Uribe, D., Naibo, V.: Kato-Ponce inequalities on weighted and variable Lebesgue spaces. Differ. Integr. Equ. 29, 801–836 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Cuccagna, S., Georgiev, V., Visciglia, N.: Decay and scattering of small solutions of pure power NLS in \(\mathbb{R}\) with \(p > 3\) and with a potential. Commun. Pure Appl. Math. 67, 957–981 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fefferman, C., Stein, E.M.: Some maximal inequalities. Am. J. Math. 93, 107–115 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fujiwara, K., Ozawa, T.: Remarks on bilinear estimates in the Sobolev spaces. RIMS Kôhkyûroku Bessatsu 56, 1–9 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Grafakos, L.: Classical Fourier analysis 2nd edition GTM249. Springer, New York (2008)

    Google Scholar 

  17. Grafakos, L.: Multilinear operators in harmonic analysis and partial differential equations. In: Harmonic analysis and nonlinear partial differential equations, RIMS Kôkyûroku Bessatsu, B33, 11–27. Res. Inst. Math. Sci. (RIMS), Kyoto, (2012)

  18. Grafakos, L., Torres, R.H.: Multilinear Calderón-Zygmund theory. Adv. Math. 165, 124–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grafakos, L., Si, Z.: The Hörmander multiplier theorem for multilinear operators. J. Reine Angew. Math. 668, 133–147 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Grafakos, L., Oh, S.: The Kato-Ponce inequality. Commun. Partial Differ. Equ. 39, 1128–1157 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grafakos, L., Liu, L., Yang, D.: Vector-valued singular integrals and maximal functions on spaces of homogeneous type. Math. Scand. 104, 296–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grafakos, L., Miyachi, A., Tomita, N.: On multilinear Fourier multipliers of limited smoothness. Can. J. Math. 65, 299–330 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grafakos, L., Maldonado, D., Naibo, V.: A remark on an endpoint Kato-Ponce inequality. Differ. Integr. Equ. 27, 415–424 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Guo, Z., Lin, Y., Molinet, L.: Well-posedness in energy space for the periodic modified Banjamin-Ono equation. J. Differ. Equ. 256, 2778–2806 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kenig, C.E., Stein, E.M.: Multilinear estimates and fractional integration. Math. Res. Lett. 6, 1–15 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kozono, H., Taniuchi, Y.: Bilinear estimates in BMO and the Navier-Stokes equations. Math. Z. 235, 173–194 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Linares, F., Pilod, D., Saut, J.-C.: Dispersive perturbations of Burgers and hyperbolic equations I: local theory. SIAM J. Math. Anal. 46, 1505–1537 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miyachi, A., Tomita, N.: Calderón-Vaillancourt-type theorem for bilinear operators. Indiana Univ. Math. J. 62, 1165–1201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ozawa, T., Tsutsumi, Y.: Space-time estimates for null gauge forms and nonlinear Schrödinger equations. Differ. Integr. Equ. 11, 201–222 (1998)

    MATH  Google Scholar 

  32. Ozawa, T., Zhai, J.: Global existence of small classical solutions to nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 303–311 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tomita, N.: A Hörmander type multiplier theorem for multilinear operators. J. Funct. Anal. 259, 2028–2044 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partly supported by the Japan Society for the Promotion of Science, Grant-in-Aid for JSPS Fellows No 26\(\cdot \)7371 and Top Global University Project of Waseda University. The second author was supported in part by INDAM, GNAMPA - Gruppo Nazionale per l’Analisi Matematica, la Probabilita e le loro Applicazion, by Institute of Mathematics and Informatics, Bulgarian Academy of Sciences and by Top Global University Project, Waseda University. The third author was supported by Grant-in-Aid for Scientific Research (A) Number 26247014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumasa Fujiwara.

Additional information

Communicated by Loukas Grafakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, K., Georgiev, V. & Ozawa, T. Higher Order Fractional Leibniz Rule. J Fourier Anal Appl 24, 650–665 (2018). https://doi.org/10.1007/s00041-017-9541-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-017-9541-y

Keywords

Mathematics Subject Classification

Navigation