Skip to main content
Log in

The S.V.D. of the Poisson Kernel

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The solution of the Dirichlet problem for the Laplacian on bounded regions \(\Omega \) in \({\mathbb R}^{N}, \ N \ge 2\) is generally described via a boundary integral operator with the Poisson kernel. Under mild regularity conditions on the boundary, this operator is a compact linear transformation of \(L^2 (\partial \Omega ,d \sigma )\) to \(L^2_H(\Omega )\)—the Bergman space of \(L^2\)-harmonic functions on \(\Omega \). This paper describes the singular value decomposition of this operator and related results. The singular functions and singular values are constructed using Steklov eigenvalues and eigenfunctions of the biharmonic operator on \(\Omega \). These allow a spectral representation of the Bergman harmonic projection and the identification of an orthonormal basis of the real harmonic Bergman space \(L^2_H(\Omega )\). A reproducing kernel for \(L^2_H(\Omega )\) and an orthonormal basis of the space \(L^2 (\partial \Omega ,d \sigma )\) also are found. This enables the description of optimal finite rank approximations of the Poisson kernel with error estimates. Explicit spectral formulae for the normal derivatives of eigenfunctions for the Dirichlet Laplacian on \(\partial \Omega \) are obtained and used to identify a constant in an inequality of Hassell and Tao.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adolfsson, V.: \(L^2\)-integrability of second-order derivatives for Poisson’s equations in non-smooth domains. Math. Scand. 70, 146–160 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amick, C.J.: Some remarks on Rellich’s theorem and the Poincare inequality. J. Lond. Math. Soc. 18, 81–93 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, Oxford (2003)

    MATH  Google Scholar 

  4. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. SIAM, Philadelphia (2006)

    MATH  Google Scholar 

  5. Auchmuty, G.: Orthogonal decompositions and bases for 3-d vector fields. Numer. Funct. Anal. Optim. 15, 455–488 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Auchmuty, G.: Steklov eigenproblems and the representation of solutions of elliptic boundary value problems. Numer. Funct. Anal. Optim. 25, 321–348 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Auchmuty, G.: Spectral characterization of the trace spaces \(H^{s}(\partial \Omega )\). SIAM J. Math. Anal. 38, 894–907 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Auchmuty, G.: Reproducing kernels for Hilbert spaces of real harmonic functions. SIAM J. Math. Anal. 41, 1994–2001 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Auchmuty, G.: Bases and comparison results for linear elliptic eigenproblems. J. Math. Anal. Appl. 390, 394–406 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory, 2nd edn. Springer, New York (2001)

    Book  MATH  Google Scholar 

  11. Bergman, S.: The kernel function and conformal mapping, vol. 5. American Mathematical Society (1950)

  12. Bergman, S., Schiffer, M.: Kernel Functions and Elliptic Differential Equations in Mathematical Physics. Academic Press, New York (1953)

    MATH  Google Scholar 

  13. Bucur, D., Ferrero, A., Gazzola, F.: On the first eigenvalue of a fourth order Steklov eigenproblem. Calc. Var. Part. Differ. Equ. 35, 103–131 (2009)

    Article  MATH  Google Scholar 

  14. DiBenedetto, E.: Real Analysis. Birkhauser, Boston (2001)

    MATH  Google Scholar 

  15. Englis, M., Lukkassen, D., Peetre, J., Persson, L.-E.: The last formula of Jacques-Louis Lions: reproducing kernels for harmonic and other functions. J. Reine Angew. Math. 570, 89–129 (2004)

    MATH  MathSciNet  Google Scholar 

  16. Evans, L.C.: Partial Differ. Equ. American Mathematical Society, Providence (2000)

    Google Scholar 

  17. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  18. Ferrero, A., Gazzola, F., Weth, T.: On a fourth order Steklov eigenvalue problem. Analysis 25, 315–332 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fichera, G.: Su un principio di dualita per talune formole di maggiorazione relaive alle equazioni differenziali. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 19, 411–418 (1955)

    MATH  Google Scholar 

  20. Gazzola, F., Grunau, H-c, Sweers, G.: Polyharmonic Boundary Value Problems. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  21. Grisvard, P.: Elliptic Problems in Non-smooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  22. Hassell, A., Tao, T.: Upper and lower bounds for normal derivatives of Dirichlet eigenfunctions. Math. Res. Lett. 9, 289–305 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kuttler, J.R., Sigillito, V.G.: Estimating Eigenvalues with a Posteriori/A Priori Inequalities. Pitman Research Notes in Mathematics, vol. 135. Pitman, Boston (1985)

    MATH  Google Scholar 

  24. Lions, J.L.: Noyau Reproduisant et Systeme d’Optimalite. In: Barroso, J.A. (ed.) Aspects of Mathematics and Applications, pp. 573–582. Elsevier, Amsterdam (1986)

    Chapter  Google Scholar 

  25. Lions, J.L.: Remarks on reproducing kernels of some function spaces. In: Kufner, Cwikel, Englis, Persson, Sparr, de Gruyter. (eds.) Function Spaces, Interpolation theory and Related Topics, pp. 49–59 (2002)

  26. Necas, J.: Les Methodes directes en Theorie des equations elliptiques. Masson, Paris (1967)

    MATH  Google Scholar 

  27. Ozawa, S.: Asymptotic property of eigenfunction of the Laplacian at the boundary. Osaka J. Math. 30, 303–314 (1993)

    MATH  MathSciNet  Google Scholar 

  28. Shapiro, H.S.: The Schwarz Function and its Generalization to Higher Dimensions. Wiley, New York (1992)

    MATH  Google Scholar 

  29. Sigillito, V.G.: Explicit a Priori Inequalities with Applications to Boundary Value Problems. Pitman Research Notes in Mathematics, vol. 13. Pitman, London (1977)

    MATH  Google Scholar 

  30. Zeidler, E.: Nonlinear Functional Analysis and Its Applications, II/A: Linear Monotone Methods. Springer, New York (1990)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giles Auchmuty.

Additional information

Communicated by Luis Vega.

The author gratefully acknowledges research support by NSF award DMS 11008754.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Auchmuty, G. The S.V.D. of the Poisson Kernel. J Fourier Anal Appl 23, 1517–1536 (2017). https://doi.org/10.1007/s00041-016-9515-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9515-5

Keywords

Mathematics Subject Classification

Navigation