Skip to main content
Log in

A Stabilization Technique for Single-Ended and Differential Harmonic Oscillators

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A stabilization technique is presented for harmonic oscillators which can reduce deviation of radio-frequency parameters against process variation. The stabilizing gate circuit (SGC) is designed to improve fidelity of oscillation amplitude, phase noise, and period jitter without a significant increase in power requirement. Process-related phenomena such as device aging, feature size uncertainty, and supply ripples are covered through modeling of threshold voltage, device dimension, and power rail variation. Single-ended and differential circuits of inductor-capacitor (LC)- tuned Hartley harmonic oscillators are simulated with 90-nm device parameters to verify the SGC’s effectiveness for diverse front ends. The technique is able to reduce variability of phase noise and period jitter by up to 34 dBc/Hz and 76 fs over a wide range of offset frequencies (10\(^3\)–10\(^6\) Hz). It also improves stability of oscillation amplitude by up to 29 % and performs better than other reported process compensation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Asenov, A.R. Brown, J.H. Davies, S. Kaya, G. Slavcheva, Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs. IEEE Trans. Electron Devices 50, 1837–1846 (2003)

    Article  Google Scholar 

  2. A. Asenov, S. Kaya, A.R. Brown, Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness. IEEE Trans. Electron Devices 50(5), 1254–1260 (2003)

    Article  Google Scholar 

  3. P. Andrei, L. Oniciuc, Suppressing random dopant-induced fluctuations of threshold voltages in semiconductor devices. J. Appl. Phys. 104(10), 104508–104510 (2008)

    Article  Google Scholar 

  4. H. Abrishami, S. Hatami, M. Pedram, Multi-corner, energy-delay optimized, NBTI-aware flip-flop design, in Proceedings of International Symposium on Quality Electronic Design, pp. 652–659 (2010)

  5. S.R. Ardali, S.G. Samani, B. Arzanifar, Oscillation amplitude analysis of MOS hartley oscillator using a general model. J. Int. Circuits Syst. 6(1), 60–67 (2011)

    Google Scholar 

  6. S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, V. De, Parameter variations and impact on circuits and microarchitecture, in Proceedings of 40th ACM Design Automation Conference, pp. 338–342 (2003)

  7. D. Bull, S. Das, K. Shivashankar, G.S. Dasika, K. Flautner, D. Blaauw, A power-efficient 32 bit ARM processor using timing-error detection and correction for transient-error tolerance and adaptation to PVT variation. IEEE J. Solid State Circuits 46, 18–31 (2011)

    Article  Google Scholar 

  8. F. Bahmani, T. Serrano-Gotarredona, E. Snchez-Sinencio, An accurate automatic quality factor tuning scheme for second-order LC filters. IEEE Trans. Circuits Syst. I 54(4), 745–756 (2007)

    Article  Google Scholar 

  9. Z. Chen, K. Hess, J. Lee, J.W. Lyding, E. Rosenhaum, I. Kizilyalli, S. Chetlur, R. Huang, On the mechanism for interface trap generation in MOS transistors due to channel hot carrier stressing. IEEE Electron Device Lett. 21(1), 24–26 (2000)

    Article  Google Scholar 

  10. F. Cheng, R. J. Weber, A novel process-variation insensitive network for on-chip impedance matching, in Proceedings of International Symposium on Communications and Information Technology vol. 1, pp. 43–46 (2004)

  11. A. Calimera, E. Macii, M. Poncino, NBTI-aware power gating for concurrent leakage and aging optimization, in Proceedings ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 127–132 (2009)

  12. A. Demir et al., Phase noise in oscillators: a unifying theory and numerical methods for characterization. IEEE Trans. Circuits Syst. I 47(5), 655–674 (2000)

    Article  MathSciNet  Google Scholar 

  13. N. Drego, A. Chandrakasan, D. Boning, Lack of spatial correlation in MOSFET threshold voltage variation and implications for voltage scaling. IEEE Trans. Semicond. Manuf. 22(2), 245–255 (2009)

    Article  Google Scholar 

  14. G. Gielen, P. De Wit, E. Maricau, J. Loeckx, J. Martin-Martinez, B. Kaczer, et al., Emerging yield and reliability challenges in nanometer CMOS technologies, in Proceedings of Design, Automation and Test in Europe, pp. 1322–1327 (2008)

  15. T. Grasser, B. Kaczer, W. Goes, H. Reisinger, T. Aichinger, P. Hehenberger et al., Recent advances in understanding the bias temperature instability, in Proceedings of IEEE International Electron Devices Meeting, pp. 85–88 (2010)

  16. P. Horowitz, H. Winfield, The Art of Electronics, 2nd edn. (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  17. B. Kaczer, R. Degraeve, M. Rasras, K. Van de Mieroop, P.J. Roussel, G. Groeseneken, Impact of MOSFET gate oxide breakdown on digital circuit operation and reliability. IEEE Trans. Electron Devices 49(3), 500–506 (2002)

    Article  Google Scholar 

  18. K. Kuhn, C. Kenon, A. Kornfeld, M. Liu, A. Maheshwari, W.-K. Shih, S. Sivakumar, G. Taylor, Voorn P. Vander, K. Zawadzki, Managing process variation in Intel’s 45 nm CMOS technology. Intel Technol. J. 12(2), 93–109 (2008)

    Google Scholar 

  19. S. V. Kumar, C. H. Kim, S. S. Sapatnekar, Impact of NBTI on SRAM read stability and design for reliability, in Proceedings of 7th International Symposium on Quality Electronic Design, pp. 210–218 (2006)

  20. K. Kang, S.P. Park, K. Kim, K. Roy, On-chip variability sensor using phase-locked loop for detecting and correcting parametric timing failures. IEEE Trans. VLSI Syst. 18(2), 270–280 (2010)

    Article  Google Scholar 

  21. E. Li, E. Rosenbaum, L. F. Register, J. Tao, P. Fang, Hot carrier induced degradation in deep submicron MOSFETs at 100\(^\circ \)C, in Proceedings of International Reliability Physics Symposium, pp. 103–107 (2000)

  22. Y. Liu, J.-S. Yuan, CMOS RF low-noise amplifier design for variability and reliability. IEEE Trans. Device Mater. Reliab. 11(3), 450–457 (2011)

    Article  Google Scholar 

  23. S.-H. Lee, Y.-H. Chuang, S.-L. Jang, C.-C. Chen, Low-phase noise hartley differential CMOS voltage controlled oscillator. IEEE Microw. Wirel. Compon. Lett. 17(2), 145–147 (2007)

    Article  Google Scholar 

  24. N.C.-C. Lu, J.M. Sung, Reverse short-channel effects on threshold voltage in submicrometer salicide devices. IEEE Electron Device Lett. 10(10), 446–448 (1989)

    Article  Google Scholar 

  25. S. Markov, L. Gerrer, F. Adamu-Lema, S. Amoroso, A. Asenov, Time domain simulation of statistical variability and oxide degradation including trapping/detrapping dynamics, in Proceedings International Conference on Simulation of Semiconductor Devices and Processes, pp. 157–160 (2012)

  26. M. S. McCorquodale, M. K. Ding, R. B. Brown, Study and simulation of CMOS LC oscillator phase noise and jitter, in Proceedings IEEE International Symposium on circuits and systems, pp. 665–668 (2003)

  27. M. Y. Mukadam, O. G. Filho, Z. Xuan, A. B. Apsel, Process variation compensation of a 4.6 GHz LNA in 65 nm CMOS, in Proceedings IEEE International Symposium on Circuits Systems, pp. 2490–2493 (2010)

  28. T. Nigam, CMOS reliability: from discrete device degradation to circuit aging, in Proceedings International Symposium on VLSI Design, Automation, and Test, p. 1 (2013)

  29. G. Panagopoulos, K. Roy, A three-dimensional physical model for Vth variations considering the combined effect of NBTI and RDF. IEEE Trans. Electron Devices 58, 2337–2346 (2011)

    Article  Google Scholar 

  30. A. Papanikolaou, Reliability issues in deep deep submicron technologies: time-dependent variability and its impact on embedded system design, in Proceedings of International Conference on Very Large Scale Integration (2006), pp. 342–347

  31. G. Roy, A.R. Brown, F. Adamu-Lema, S. Roy, A. Asenov, Simulation study of individual and combined sources of intrinsic parameter fluctuations in conventional nano-MOSFETs. IEEE Trans. Electron Devices 53, 3063–3071 (2006)

    Article  Google Scholar 

  32. J.H. Stathis, S. Zafar, The negative bias temperature instability in MOS devices: a review. Microelectron. Reliab. 46(24), 270–286 (2006)

    Article  Google Scholar 

  33. T. E. Turner, Design for reliability, in Proceedings of International Physical and Failure Analysis, pp. 257–264 (2006)

  34. T. C. Weigandt, B. Kim, P. R. Gray, Analysis of timing jitter in cmos ring-oscillators, in Proceedings IEEE International Symposium on Circuits Systems, pp. 27–30 (1994)

  35. T.P. Wang et al., A 22-GHz push–push CMOS oscillator using micromachined inductors. IEEE Microw. Wirel. Compon. Lett. 15(12), 859–861 (2005)

    Article  Google Scholar 

  36. Y. Wu, C. Shi, M. Ismail, H. Olsson, Temperature compensation design for a 2.4 GHz CMOS low noise amplifier, in Proceedings IEEE International Symposium on Circuits Systems, pp. 323–326 (2000)

  37. Y. Ye, S. Gummalla, C.-C. Wang, C. Chakrabarti, Y. Cao, Random variability modeling and its impact on scaled CMOS circuits. J. Comput. Electron. 9(3–4), 108–113 (2010)

    Article  Google Scholar 

  38. J. Yuan, S. Chen, A simulation study of Colpitts oscillator reliability and variability. IEEE Trans. Device Mater. Reliab. 12, 576–581 (2012)

    Article  Google Scholar 

  39. J.S. Yuan, E. Kritchanchai, Power amplifier resilient design for process, voltage, and temperature variations. Microelectron. Reliab. 53(6), 856–860 (2013)

    Article  Google Scholar 

  40. P. S. Zuchowski, P. A. Habitz, J. D. Hayes, J. H. Oppold, Process and environmental variation impacts on ASIC timing, in Proceedings of IEEE/ACM International Conference on Computer-aided Design, pp. 336–342 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Rashid, A.B.M.H. A Stabilization Technique for Single-Ended and Differential Harmonic Oscillators. Circuits Syst Signal Process 34, 3409–3429 (2015). https://doi.org/10.1007/s00034-015-0017-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0017-5

Keywords

Navigation