Skip to main content
Log in

A 1-V, 330-nW, 6-Bit Current-Mode Logarithmic Cyclic ADC for ISFET-Based \(p\!H\) Digital Readout System

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper describes the design and implementation of a low-power current-mode logarithmic analog-to-digital converter (ADC) for an ISFET-based \(p\!H\) digital readout system. The system comprises a front-end ISFET-based \(p\!H\) readout circuit and a succeeding logarithmic ADC to produce a digital output signal which is linearly related to the input \(p\!H\) variation. The front-end \(p\!H\) readout circuit is realized using a subthreshold ISFET/REFET differential pair with a current-mode translinear multiplier/divider circuit. The logarithmic ADC is realized using the cyclic architecture and current-mode circuit techniques to achieve low power dissipation. High-accuracy current sample-and-hold circuit based on the regulated-cascode switched-current memory cell and low-power high-resolution current comparator are proposed for the ADC realization. All circuits were designed to operate with a single 1-V power supply voltage, and were simulated with process parameters from a 0.18-\(\mu \)m CMOS technology. The power dissipation of the front-end \(p\!H\) readout circuit and the logarithmic ADC is 20 and 330 nW, respectively. The front-end \(p\!H\) readout circuit can produce an output current range of 0.1–300 nA which is logarithmically corresponded to the input \(p\!H\) range of 4–10. The logarithmic ADC operates with 1-kS/s sampling rate and achieves the integral nonlinearity error of \(\pm 0.8\) LSB, the effective number of bits of 5.95, and 37.6-dB of signal-to-noise-distortion ratio with 100-nA full-scale input range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. N. Bako, A. Baric, A low-power fully differential 9-bit C-2C cyclic ADC, in 20th European Conference on Circuit Theory and Design. IEEE 20th European Conference on Circuit Theory and Design, pp. 576–579 (2011)

  2. J. Bausells, J. Carrabina, A. Errachid, A. Merlos, Ion-sensitive field-effect transistors fabricated in a commercial CMOS technology. Sens. Actuators B 57(1–3), 56–62 (1999)

    Article  Google Scholar 

  3. S. Cantarano, G.V. Pallottino, Logarithmic analog-to-digital converters: a survey. IEEE Trans. Instrum. Meas. 22(3), 201–213 (1973)

    Article  Google Scholar 

  4. P. Crippa, C. Turchetti, M. Conti, A statistical methodology for the design of high-performance CMOS current-steering digital-to-analog converters. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(4), 377–394 (2002)

    Article  Google Scholar 

  5. R. Dominguez-Castro, A. Rodriguez-Vazquez, F. Medeiro, J. Huertas, High resolution CMOS current comparators. in Eighteenth European Solid-State Circuits Conference, 1992. ESSCIRC ’92. pp. 242–245 (1992)

  6. M. El Sharkawy, P. Georgiou, C. Toumazou, A silicon pancreatic islet for the treatment of diabetes, in Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3136–3139 (2010)

  7. A. Errachid, J. Bausells, N. Jaffrezic-Renault, A simple REFET for pH detection in differential mode. Sens. Actuators B 60(1), 43–48 (1999)

    Article  Google Scholar 

  8. P. Georgiou, C. Toumazou, A silicon pancreatic beta cell for diabetes. IEEE Trans. Biomed. Circuits Syst. 1(1), 39–49 (2007)

    Article  Google Scholar 

  9. P. Georgiou, C. Toumazou, ISFET characteristics in CMOS and their application to weak inversion operation. Sens. Actuators B 143(1), 211–217 (2009)

    Article  Google Scholar 

  10. J. Guilherme, J. Franca, New CMOS logarithmic A/D converters employing pipeline and algorithmic architectures, in 1995 IEEE International Symposium on Circuits and Systems, 1995. ISCAS ’95, vol. 1, pp. 529–532 (1995)

  11. J. Guilherme, J. Vital, J. Franca, New logarithmic two-step flash A/D converter with digital error correction for MOS technology, in Proceedings of the 38th Midwest Symposium on Circuits and Systems, vol. 2, pp. 881–884 (1995)

  12. J. Guilherme, J. Vital, J. Franca, A CMOS logarithmic pipeline A/D converter with a dynamic range of 80 dB, in 9th International Conference on Electronics, Circuits and Systems, vol. 1, pp. 193–196 (2002)

  13. P. Hammond, D. Ali, D. Cumming, Design of a single-chip pH sensor using a conventional 0.6-\(\mu \)m CMOS process. IEEE Sens. J. 4(6), 706–712 (2004)

    Article  Google Scholar 

  14. Y.C. Huang, T.C. Lee, A 0.02-mm\(^2\) 9-bit 50-MS/s cyclic ADC in 90-nm digital CMOS technology. IEEE J. Solid State Circuits 45(3), 610–619 (2010)

    Article  Google Scholar 

  15. C.G. Jakobson, M. Feinsod, Y. Nemirovsky, Low frequency noise and drift in ion sensitive field effect transistors. Sens. Actuators B 68(1–3), 134–139 (2000)

    Article  Google Scholar 

  16. M. Judy, A. Sodagar, R. Lotfi, A nonlinear signal-specific ADC for efficient neural recording, in 2010 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 17–20 (2010)

  17. C.H. Lee, H.I. Seo, Y.C. Lee, B.W. Cho, H. Jeong, B.K. Sohn, All solid type ISFET glucose sensor with fast response and high sensitivity characteristics. Sens. Actuators B 64(1–3), 37–41 (2000)

    Google Scholar 

  18. J. Lee, J. Kang, S. Park, J. Seo, J. Anders, J. Guilherme, M. Flynn, A 2.5 mW 80 dB DR 36 dB SNDR 22 MS/s logarithmic pipeline ADC. IEEE J. Solid State Circuits 44(10), 2755–2765 (2009)

    Article  Google Scholar 

  19. J. Lee, H.G. Rhew, D. Kipke, M. Flynn, A 64 channel programmable closed-loop neurostimulator with 8 channel neural amplifier and logarithmic ADC. IEEE J Solid State Circuits 45(9), 1935–1945 (2010)

    Article  Google Scholar 

  20. J. Mahattanakul, Logarithmic data converter suitable for hearing aid applications. Electron. Lett. 41(7), 394–396 (2005)

    Article  Google Scholar 

  21. S. Martinoia, G. Massobrio, A behavioral macromodel of the ISFET in SPICE. Sens. Actuators B 62(3), 182–189 (2000)

    Article  Google Scholar 

  22. K.Y. Park, S.B. Choi, M. Lee, B.K. Sohn, S.Y. Choi, ISFET glucose sensor system with fast recovery characteristics by employing electrolysis. Sens. Actuators B 83(1–3), 90–97 (2002)

    Article  Google Scholar 

  23. M. Pelgrom, A.C.J. Duinmaijer, A. Welbers, Matching properties of MOS transistors. IEEE J. Solid State Circuits 24(5), 1433–1439 (1989)

    Article  Google Scholar 

  24. A. Rodriguez-Vazquez, R. Dominguez-Castro, F. Medeiro, M. Delgado-Restituto, High resolution CMOS current comparators: design and applications to current-mode function generation. Analog Integr. Circuits Signal Process. 7(2), 149–165 (1995)

    Article  Google Scholar 

  25. J.M. Rothberg, W. Hinz, T.M. Rearick, J. Schultz, W. Mileski, M. Davey, J.H. Leamon, K. Johnson, M.J. Milgrew, M. Edwards, J. Hoon, J.F. Simons, D. Marran, J.W. Myers, J.F. Davidson, A. Branting, J.R. Nobile, B.P. Puc, D. Light, T.A. Clark, M. Huber, J.T. Branciforte, I.B. Stoner, S.E. Cawley, M. Lyons, Y. Fu, N. Homer, M. Sedova, X. Miao, B. Reed, J. Sabina, E. Feierstein, M. Schorn, M. Alanjary, E. Dimalanta, D. Dressman, R. Kasinskas, T. Sokolsky, J.A. Fidanza, E. Namsaraev, K.J. McKernan, A. Williams, G.T. Roth, J. Bustillo, An integrated semiconductor device enabling non-optical genome sequencing. Nature 475(7356), 348–352 (2011)

    Article  Google Scholar 

  26. T. Serrano-Gotarredona, B. Linares-Barranco, A. Andreou, A general translinear principle for subthreshold MOS transistors. IEEE Trans. Circuits Syst. I 46(5), 607–616 (1999)

    Article  Google Scholar 

  27. L. Shepherd, C. Toumazou, Weak inversion ISFETs for ultra-low power biochemical sensing and real-time analysis. Sens. Actuators B 107(1), 468–473 (2005)

    Article  Google Scholar 

  28. S. Sirimasakul, A. Thanachayanont, W. Jeamsaksiri, Low-power current-mode logarithmic pipeline analog-to-digital converter for ISFET based pH sensor, in 9th International Symposium on Communications and Information Technology. ISCIT 2009, pp. 1340–1343 (2009)

  29. J.J. Sit, R. Sarpeshkar, A micropower logarithmic A/D with offset and temperature compensation. IEEE J. Solid State Circuits 39(2), 308–319 (2004)

    Article  Google Scholar 

  30. R.L. Smith, D.C. Scott, An integrated sensor for electrochemical measurements. IEEE Trans. Biomed. Eng. 33(2), 83–90 (1986)

    Article  Google Scholar 

  31. B.K. Sohn, B.W. Cho, C.S. Kim, D.H. Kwon, ISFET glucose and sucrose sensors by using platinum electrode and photo-crosslinkable polymers. Sens. Actuators B 41(1–3), 7–11 (1997)

    Article  Google Scholar 

  32. A. Thanachayanont, S. Sirimasakul, Ultra-low-power differential ISFET/REFET readout circuit. ETRI J. 31(2), 243–245 (2009)

    Article  Google Scholar 

  33. C. Toumazou, P. Georgiou, Piet bergveld - 40 years of ISFET technology: from neuronal sensing to DNA sequencing. Electron. Lett. 47(26), S7–S12 (2011)

    Article  Google Scholar 

  34. C. Toumazou, J. Hughes, D. Pattullo, Regulated cascode switched-current memory cell. Electron. Lett. 26(5), 303–305 (1990)

    Article  Google Scholar 

  35. C. Toumazou, L.M. Shepherd, S.C. Reed, G.I. Chen, A. Patel, D.M. Garner, C.J.A. Wang, C.P. Ou, K. Amin-Desai, P. Athanasiou, H. Bai, I.M.Q. Brizido, B. Caldwell, D. Coomber-Alford, P. Georgiou, K.S. Jordan, J.C. Joyce, M. La Mura, D. Morley, S. Sathyavruthan, S. Temelso, R.E. Thomas, L. Zhang, Simultaneous DNA amplification and detection using a pH-sensing semiconductor system. Nat. Methods 10(7), 641–646 (2013)

    Article  Google Scholar 

  36. C. Toumazou, T.S.L.K. Thay, P. Georgiou, A new era of semiconductor genetics using ion-sensitive field-effect transistors: the gene-sensitive integrated cell. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 372(2012), 20130,112 (2014)

  37. H. Traff, Novel approach to high speed CMOS current comparators. Electron. Lett. 28(3), 310–312 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apinunt Thanachayanont.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanachayanont, A. A 1-V, 330-nW, 6-Bit Current-Mode Logarithmic Cyclic ADC for ISFET-Based \(p\!H\) Digital Readout System. Circuits Syst Signal Process 34, 1405–1429 (2015). https://doi.org/10.1007/s00034-014-9908-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9908-0

Keywords

Navigation