Skip to main content
Log in

Fault Tolerant Tracking Control Scheme for UAV Using Dynamic Surface Control Technique

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel fault tolerant control (FTC) approach is proposed for a hypersonic unmanned aerial vehicle (UAV) attitude dynamical system with actuator loss-of-effectiveness (LOE) fault. Firstly, the nonlinear attitude dynamics of hypersonic UAV is given, which represents the dynamic characteristics of UAV in ascent/reentry phases. Then a fault detection scheme is presented by designing a nonlinear fault detection observer (FDO) for the faulty attitude dynamical system of UAV. Moreover, the fault tolerant control scheme is proposed on the basis of the dynamic surface control technique, which guarantees the asymptotic output tracking and ultimate uniform boundedness of the closed-loop dynamical systems of UAV in the actuator LOE faulty case. Finally, simulation results are given to illustrate the effectiveness of the developed FTC scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Benallegue, A. Mokhtari, L. Fridman, High-order sliding-mode observer for a quadrotor UAV. Int. J. Robust Nonlinear Control 18(4–5), 427–440 (2008)

    Article  MathSciNet  Google Scholar 

  2. M. Benosman, K.Y. Lum, Passive actuators fault-tolerant control for affine nonlinear systems. IEEE Trans. Control Syst. Technol. 18(1), 152–163 (2010)

    Article  Google Scholar 

  3. N. Berend, C. Talbot, Overview of some optimal control methods adapted to expendable and reusable launch vehicle trajectories. Aerosp. Sci. Technol. 10(3), 222–232 (2006)

    Article  MATH  Google Scholar 

  4. K.P. Bollino, M.W. Oppenheimer, D.D. Doman, Optimal guidance command generation and tracking for reusable launch vehicle reentry, in AIAA Guidance, Navigation, and Control Conference, Paper Number: AIAA 2006-6691

  5. N.G. Cui, J.T. Xu, R.J. Mu, P.X. Han, Gain-scheduled reusable launch vehicle attitude controller design, in Proceedings of the International Conference on Mechatronics and Automation (2009), pp. 4393–4397

    Chapter  Google Scholar 

  6. Z.F. Gao, B. Jiang, P. Shi, Y.F. Xu, Fault-tolerant control for a near space vehicle with a stuck actuator fault based on a Takagi-Sugeno fuzzy model. Proc. Inst.Mech. Eng., I J. Syst. Control Eng. 224(5), 587–598 (2010)

    Article  Google Scholar 

  7. Z.F. Gao, B. Jiang, P. Shi, Y.F. Xu, Fault accommodation for near space vehicle attitude dynamics via T-S fuzzy model. Int. J. Innov. Comput., Inf. Control 6(11), 4843–4856 (2010)

    Google Scholar 

  8. Z.W. Gao, S.X. Ding, Fault reconstruction for Lipschitz nonlinear descriptor systems via linear matrix inequality approach. Circuits Syst. Signal Process. 27(3), 295–308 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Jiang, Z.F. Gao, P. Shi, Y.F. Xu, Adaptive fault-tolerant tracking control of near space vehicle using Takagi-Sugeno fuzzy models. IEEE Trans. Fuzzy Syst. 18(5), 1000–1007 (2010)

    Article  Google Scholar 

  10. Y. Jiang, Q.L. Hu, G.F. Ma, Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown bounded disturbances and actuator failures. ISA Trans. 49(1), 57–69 (2010)

    Article  Google Scholar 

  11. H. Komatsu, T. Suzuki, S. Okuma, Y. Yamaguchi, Realization of fault tolerant control using μ-synthesis for the reusable launch vehicle, in Proceedings of the 41st SICE Annual Conference (2002), pp. 169–174

    Chapter  Google Scholar 

  12. G.J. Liu, D.J. Wang, Y.C. Li, Active fault tolerant control with actuation reconfiguration. IEEE Trans. Aerosp. Electron. Syst. 40(3), 1110–1117 (2004)

    Article  MathSciNet  Google Scholar 

  13. M. Mahmoud, Sufficient conditions for the stabilization of feedback delayed discrete time fault tolerant control systems. Int. J. Innov. Comput., Inf. Control 5(5), 1137–1146 (2009)

    Google Scholar 

  14. K. Natesan, D.W. Gu, I. Postlethwaite, Design of linear parameter varying trajectory tracking controllers for an unmanned air vehicle. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 224(4), 395–402 (2010)

    Google Scholar 

  15. Y.B. Shtessel, J. Strott, J.J. Zhu, Time-varying sliding mode control with sliding mode observer for reusable launch vehicle, in AIAA Guidance, Navigation, and Control Conference, Paper Number: AIAA 2003-5362

  16. S.C. Tong, Y.M. Li, T. Wang, Adaptive fuzzy backstepping fault-tolerant control for uncertain nonlinear systems based on dynamic surface. Int. J. Innov. Comput., Inf. Control 5(10(A)), 3249–3262 (2009)

    Google Scholar 

  17. C.L. Wang, Y. Lin, Adaptive dynamic surface control for linear multivariable systems. Automatica 46(10), 1703–1711 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. H.Q. Wang, D.B. Wang, A.A. Mian, H.B. Duan, Robust multimode control design for an unmanned helicopter with multiloop flight structure. Int. J. Innov. Comput., Inf. Control 6(2), 615–626 (2010)

    Google Scholar 

  19. H.N. Wu, M.Z. Bai, Stochastic stability analysis and synthesis for nonlinear fault tolerant control systems based on the T-S fuzzy model. Int. J. Innov. Comput., Inf. Control 6(9), 3989–4000 (2010)

    Google Scholar 

  20. Y.F. Xu, B. Jiang, G. Tao, Z.F. Gao, Fault tolerant control for a class of nonlinear systems with application to near space vehicle. Circuits Syst. Signal Process. 30(3), 655–672 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Z. Xu, S. Tang, Aerodynamic surfaces control allocation for RLV reentry, in Proceedings of the 2nd International Conference on Intelligent Human-Machine Systems and Cybernetics (2010), pp. 73–76

    Chapter  Google Scholar 

  22. R. Youssef, P. Hui, Piecewise sliding mode decoupling fault tolerant control system. ICIC Express Lett. 4(4), 1215–1222 (2010)

    Google Scholar 

  23. Y.M. Zhang, J. Jiang, Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)

    Article  Google Scholar 

  24. Y.W. Zhang, S.J. Qin, Improved nonlinear fault detection technique and statistical analysis. AIChE J. 54(12), 3207–3220 (2008)

    Article  MathSciNet  Google Scholar 

  25. Y.W. Zhang, H. Zhou, S.J. Qin, T.Y. Chai, Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares. IEEE Trans. Ind. Inform. 6(1), 3–12 (2010)

    Article  Google Scholar 

  26. Y.W. Zhang, T. Hesketh, H. Wang et al., Actuator fault compensation for nonlinear systems using adaptive tracking control. Circuits Syst. Signal Process. 29(3), 419–430 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. J.J. Zhu, D.A. Lawrence, J. Fisher, Y.B. Shtessel, Direct fault tolerant RLV attitude control: a singular perturbation approach, in Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory (2002), pp. 86–91

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (91116018, 61010121), the Graduate Innovation Research Foundation of Jiangsu Province (CXLX11-0199, CXZZ11-0214), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the NUAA Research Foundation (NZ2012020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, M., Jiang, B. & Xu, D. Fault Tolerant Tracking Control Scheme for UAV Using Dynamic Surface Control Technique. Circuits Syst Signal Process 31, 1713–1729 (2012). https://doi.org/10.1007/s00034-012-9402-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9402-5

Keywords

Navigation