Skip to main content
Log in

Multiple sign-changing radially symmetric solutions in a general class of quasilinear elliptic equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper we prove that the equation \({-(r^\alpha\phi(|u^{\prime}(r)|)u^{\prime}(r))^{\prime} = \lambda r^\gamma f(u(r)), 0 < r < R}\), where \({\alpha, \gamma, \bf{R}}\) are given real numbers, \({\phi{:}\,(0, \infty) \to (0, \infty)}\) is a suitable twice-differentiable function, \({\lambda > 0}\) is a real parameter and \({f{:}\bf{R} \to \bf{R}}\) is continuous, admits an infinite sequence of sign-changing solutions satisfying \({u^{\prime}(0) =u(R) =0}\). The function f is required to satisfy tf(t) > 0 for \({t \neq 0}\). Our technique explores fixed point arguments applied to suitable integral equations and shooting arguments. Our main result extends earlier ones in the case \({\phi}\) is in the form \({\phi(t) = |t|^{\beta}}\) for an appropriate constant \({\gamma}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goncalves J.V., Santos C.A.: Positive solutions of some quasilinear singular second order equations. J. Aust. Math. Soc. 76, 125–140 (2001)

    Article  MathSciNet  Google Scholar 

  2. Goncalves J.V., Santos C.A.: Classical solutions of singular Monge-Ampére equations in a ball. J. Math. Anal. Appl. 305, 240–252 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Iaia J.: Radial solutions to a p-Laplacian Dirichlet problem. Appl. Anal. 58, 335–350 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Goncalves J.V., Melo A.L.: Multiple sign changing solutions in a class of quasilinear equations. Differ. Integral Equ. 15, 147–165 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Clément Ph., de Figueiredo D.G., Mitidieri E.: Quasilinear elliptic equations with critical exponents. Top. Meth. Nonlinear Anal. 7, 133–170 (1996)

    MATH  Google Scholar 

  6. Fukagai N., Narukawa K.: On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Ann. Mat. 186, 539–564 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Saxton R., Wei D.: Radial solutions to a nonlinear p-harmonic Dirichlet problem. Appl. Anal. 51, 59–80 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Castro A., Kurepa A.: Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball. Proc. Am. Math. Soc. 101, 57–64 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cañada A., Drábek P., Fonda A.: Handbook of Differential Equations, Ordinary Diferential Equations. Vol I. Elsevier-North Holland, Amsterdam (2004)

    Google Scholar 

  10. Cheng Y.: On the existence of radial solutions of a nonlinear elliptic equation on the unit ball. Nonlinear Anal. 24, 287–307 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Strauss W.: Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55, 149–162 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ni W.M., Serrin J.: Nonexistence theorems for singular solutions of quasilinear partial differential equations. Comm. Pure Appl. Math. 39, 379–399 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pucci P., Zhang Q.: Existence of entire solutions for a class of variable exponent elliptic equations. J. Differ. Equ. 257, 1529–1566 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Castro A., Cossio J., Neuberger J.M.: A sign-changing solution for a superlinear Dirichlet problem. Rocky Mountain J. Math. 27(4), 1041–1053 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mihailescu M., Radulescu V.: Nonhomogeneous Neumann problems in Orlicz–Sobolev spaces. C.R. Acad. Sci. Paris, Ser. I 346, 401–406 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mihailescu M., Radulescu V.: Existence and multiplicity of solutions for a quasilinear non-homogeneous problems: An Orlicz-Sobolev space setting. J. Math. Anal. Appl. 330, 416–432 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Molica Bisci G., Repovs D.: Multiple solutions for elliptic equations involving a general operator in divergence form. Ann. Acad. Sci. Fenn. Math. 39, 259–273 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Radulescu V., Repovs D.: Combined effects in nonlinear problems arising in the study of anisotropic continuous media. Nonlinear Anal. 75, 1524–1530 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Radulescu V., Repovs D.: Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis. CRC Press, Taylor and Francis Group, Boca Raton (2015)

    Book  Google Scholar 

  20. Radulescu V.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. Theory Methods Appl. 121, 336–369 (2015)

    Article  MathSciNet  Google Scholar 

  21. Simon, J.: Regularité de la solution d’une equation non lineaire dans R N, Springer Lecture Notes in Math. # 665 (Ph. Benilan Editor) pp. 203–227 (1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudianor O. Alves.

Additional information

Partially supported by PROCAD/CAPES/UFG/UnB-Brazil. Claudianor O. Alves was supported by CNPQ/Brasil. Jose V. A. Goncalves was supported by CNPq/Brazil. Kaye O. Silva was supported by CAPES/Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.O., Goncalves, J.V.A. & Silva, K.O. Multiple sign-changing radially symmetric solutions in a general class of quasilinear elliptic equations. Z. Angew. Math. Phys. 66, 2601–2623 (2015). https://doi.org/10.1007/s00033-015-0543-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0543-9

Mathematics Subject Classification

Keywords

Navigation