Skip to main content
Log in

On the equivalence of local and global area-constraint formulations for lipid bilayer vesicles

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Lipid bilayer membranes are commonly modeled as area-preserving fluid surfaces that resist bending. There appear to be two schools of thought in the literature concerning the actual area constraint. In some works the total or global area of the vesicle is a prescribed constant, while in others the local area ratio is assigned to unity. In this work we demonstrate the equivalence of these ostensibly distinct approaches in the specific case when the equilibrium configuration is a smooth, closed surface of genus zero. We accomplish this in the context of the Euler–Lagrange equilibrium equations, constraint equations and the second variation with admissibility conditions, for a broad class of models—including the phase-field type. In particular, the two formulations have equivalent equilibria characterized by the same local-energy properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Helfrich W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch 28, 693–703 (1973)

    MathSciNet  Google Scholar 

  2. Bonito A., Nochetto R.H., Sebastian P.M.: Parametric FEM for geometric biomembranes. J. Comput. Phys. 229(9), 3171–3188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Taniguchi T.: Shape deformation and phase separation dynamics of two-component vesicles. Phys. Rev. Lett. 76(23), 4444–4447 (1996)

    Article  Google Scholar 

  4. Feng F., Klug W.S.: Finite element modeling of lipid bilayer membranes. J. Comput. Phys. 220(1), 394–408 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Elliott C.M., Stinner B.: Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements. Commun. Comput. Phys 13(2), 325–360 (2013)

    MathSciNet  Google Scholar 

  6. Jenkins J.: Static equilibrium of configurations of a model red blood cell membrane. Biophys. J. 13, 926–939 (1973)

    Article  Google Scholar 

  7. Steigmann D.J., Baesu E., Rudd R., Belak J., McElfresh M.: On the variational theory of cell-membrane equilibria. Interfaces Free Boundaries 5, 357–366 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jost J.: Compact Riemann Surfaces. Springer, New York (2002)

    Book  MATH  Google Scholar 

  9. Tu Z., Ou-Yang Z.: A geometric theory on the elasticity of bio-membranes. J. Phys. A Math. Gen. 37(47), 11407 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Capovilla R., Guven J.: Second variation of the Helfrich–Canham Hamiltonian and reparametrization invariance. J. Phys. A Math. Gen. 37(23), 5983 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lai R., Wen Z., Yin W., Gu X., Lui L.: Folding-free global conformal mapping for genus-0 surfaces by harmonic energy minimization. J. Sci. Comput. 58(3), 705–725 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ciarlet P.G.: Mathematical Elasticity, vol. 1. North-Holland, Amsterdam (1988)

    Google Scholar 

  13. Warner F.W.: Foundations of Differentiable Manifolds and Lie Groups. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  14. Evans L.C.: Partial Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  15. Healey, T.J., Dharmavaram, S.: Existence of global symmetry-breaking solutions in an elastic phase-field model for lipid bilayer vesicles. arXiv:1402.2314

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Dharmavaram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharmavaram, S., Healey, T.J. On the equivalence of local and global area-constraint formulations for lipid bilayer vesicles. Z. Angew. Math. Phys. 66, 2843–2854 (2015). https://doi.org/10.1007/s00033-015-0523-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0523-0

Mathematics Subject Classification

Keywords

Navigation