Skip to main content
Log in

Vortex-type solutions to a magnetic nonlinear Choquard equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the stationary nonlinear magnetic Choquard equation

$$(-{\rm i}\nabla + A(x))^{2} u + W(x)u = \left(\frac{1}{|x|^{\alpha}} \ast |u|^{p}\right) |u|^{p - 2}u, \quad x \in \mathbb{R}^N,$$

where \({N \geq 3, \alpha \in (0, N), p \in \bigl[2, \frac{2N - \alpha}{N - 2}\bigr), A : \mathbb{R}^N \rightarrow \mathbb{R}^N}\) is a magnetic potential and \({W : \mathbb{R}^N \rightarrow \mathbb{R}}\) is a bounded electric potential. For a given group \({\Gamma}\) of linear isometries of \({\mathbb{R}^N}\), we assume that A(gx) = gA(x) and W(gx) = W(x) for all \({g \in \Gamma, x \in \mathbb{R}^N}\). Under some assumptions on the decay of A and W at infinity, we establish the existence of solutions to this problem which satisfy

$$u(\gamma{x}) = \phi(\gamma)u(x) \quad {\rm for\, all} \gamma \in \Gamma,\, x \in \mathbb{R}^N,$$

where \({\phi : \Gamma \rightarrow \mathbb{S}^1}\) is a given continuous group homomorphism into the unit complex numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chossat P., Lauterbach R., Melbourne I.: Steady-state bifurcation with O(3)-symmetry. Arch. Ration. Mech. Anal. 113, 313–376 (1990)

    Article  MathSciNet  Google Scholar 

  3. Cingolani S., Clapp M., Secchi S.: Multiple solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 63, 233–248 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cingolani S., Clapp M., Secchi S.: Intertwining semiclassical solutions to a Schrödinger–Newton system. Discret. Contin. Dyn. Syst. Ser. S 6, 891–908 (2013)

    MATH  MathSciNet  Google Scholar 

  5. Cingolani S., Secchi S.: Multiple \({\mathbb{S}^1}\)-orbits for the Schrödinger–Newton system. Differ. Integral Equ. 26, 867–884 (2013)

    MATH  MathSciNet  Google Scholar 

  6. Cingolani S., Secchi S., Squassina M.: Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb. Sect. A 140, 973–1009 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Clapp M., Salazar D.: Multiple sign changing solutions of nonlinear elliptic problems in exterior domains. Adv. Nonlinear Stud. 12, 427–443 (2012)

    MATH  MathSciNet  Google Scholar 

  8. Clapp M., Salazar D.: Positive and sign changing solutions to a nonlinear Choquard equation. J. Math. Anal. Appl. 407, 1–15 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lieb E.H.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1976)

    MathSciNet  Google Scholar 

  10. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Math, vol. 14. 2nd edn. American Mathematical Society, Providence, Rhode Island (2001)

  11. Lieb E.H., Simon B.: The Hartree–Fock theory for Coulomb systems. Commun. Math. Phys. 53, 185–194 (1977)

    Article  MathSciNet  Google Scholar 

  12. Lions P.-L.: The Choquard equation and related equations. Nonlinear Anal. 4, 1063–1073 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ma L., Zhao L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Menzala G.P.: On regular solutions of a nonlinear equation of Choquard’s type. Proc. R. Soc. Edinb. Sect. A 86, 291–301 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Moroz I.M., Penrose R., Tod P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Class. Quantum Gravity 15, 2733–2742 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Moroz I.M., Tod P.: An analytical approach to the Schrödinger–Newton equations. Nonlinearity 12, 201–216 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Moroz V., Van Schaftingen J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Moroz, V., Van Schaftingen, J.: Semi-classical states for the Choquard equations. Calc. Var. doi:10.1007/s00526-014-0709-x

  19. Nolasco M.: Breathing modes for the Schrödinger–Poisson system with a multiple-well external potential. Commun. Pure Appl. Anal. 9, 1411–1419 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Palais R.S.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Penrose R.: On gravity’s role in quantum state reduction. Gen. Relativ Gravit. 28, 581–600 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Penrose R.: Quantum computation, entanglement and state reduction. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 356, 1927–1939 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Penrose, R.: The Road to Reality. A Complete Guide to the Laws of the Universe. Alfred A. Knopf, Inc., New York (2005)

  24. Secchi S.: A note on Schrödinger–Newton systems with decaying electric potential. Nonlinear Anal. 72, 3842–3856 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tod K.P.: The ground state energy of the Schrödinger–Newton equation. Phys. Lett. A 280, 173–176 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wei J., Winter M.: Strongly interacting bumps for the Schrödinger–Newton equations. J. Math. Phys. 50, 22 (2009)

    MathSciNet  Google Scholar 

  27. Willem M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser, Boston (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Salazar.

Additional information

The author was partially supported by Fondecyt Postdoctoral Project No. 3140539 (Chile) and by CONACYT Grant 129847 and UNAM-DGAPA-PAPIIT Grant IN106612 (Mexico).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar, D. Vortex-type solutions to a magnetic nonlinear Choquard equation. Z. Angew. Math. Phys. 66, 663–675 (2015). https://doi.org/10.1007/s00033-014-0412-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0412-y

Mathematics Subject Classification (2010)

Keywords

Navigation