Skip to main content
Log in

Global existence of smooth solutions to the anisotropic hyperdissipative Navier−Stokes equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We consider the global Cauchy problem for the generalized incompressible Navier–Stokes system in 3D whole space

$$\begin{array}{ll}u_t + u \cdot \nabla u + \nabla p = \mathcal{A}_h u,\\ \qquad\qquad\,\, \nabla \cdot u = 0,\qquad\qquad\qquad\qquad (1)\\ \qquad\quad\,\,\,\,\, u(x,0) = u_0 (x),\end{array}$$

where \({u = (u_{1}, u_{2}, u_{3})\in\mathbf{R}^3}\) and p are the fluid velocity field and pressure. The initial data u 0(x) are assumed to be smooth, rapidly decreasing and divergence free. Here, \({\mathcal{A}_{h}}\) is the anisotropic hyperdissipative operator. When \({\mathcal{A}_{h} u= -(-\Delta)^{5/4}}\) , it is called the critical case and the global smooth solution exists. We consider the anisotropic operator with \({\mathcal{A}_{h} u = \left( \partial_{x_1x_1} u_{1}+\partial_{x_2x_2} u_{1}- M_3^{2\alpha} u_{1} \partial_{x_1x_1} u_2 + \partial_{x_2x_2} u_{2} - M_{3}^{2\alpha} u_2 \ -M_1^{2\gamma} u_3 - M_2^{2\gamma} u_3 - M_3^{2\alpha} u_3\right).}\) and establish global regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ladyzhenskaja O.A.: Solution “in the large” of the nonstationary boundary value problem for the Navier–Stokes system with two space variables. Comm. Pure Appl. Math. 12, 427–433 (1959)

    Article  MathSciNet  Google Scholar 

  2. Cheskidov A., Holm D., Olson E., Titi E.S.: On a Leray-α model of turbulence. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2055), 629–649 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Katz N.H., Pavlovic N.: A cheap Caffarelli–Kohn–Nirenberg inequality for the Navier–Stokes equation with hyper-dissipation. Geom. Funct. Anal. 12(2), 355–379 (2005)

    Article  MathSciNet  Google Scholar 

  4. Wu J.: Global regularity for a class of generalized magnetohydrodynamic equations. J. Math. Fluid Mech. 13(2), 295305 (2011)

    Article  Google Scholar 

  5. Wang, X-J.: The Scale Invariance Principle (in preparation)

  6. Tao T.: Global regularity for a logarithmically supercritical hyperdissipative Navier–Stokes equation. Anal. PDE 2(3), 361–366 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Tao, T.: Why Global Regularity for Navier–Stokes is Hard. http://terrytao.wordpress.com/2007/03/18/why-global-regularity-for-navier-stokes-is-hard/

  9. Saut J.C., Temam R.: Remarks on the Korteweg-de Vries equation. Israel J. Math. 24(1), 7887 (1976)

    Article  MathSciNet  Google Scholar 

  10. Jimenez J.: Hyperviscous vortices. J. Fluid Mech. 279, 169–176 (1994)

    Article  MATH  Google Scholar 

  11. Zhang, T.: Global regularity for generalized anisotropic Navier–Stokes equations. J. Math. Phys. 51(12), 123503-1–123503-5 (2010)

    Google Scholar 

  12. Paicu M.: Periodic Navier–Stokes equation with zero viscosity in one direction (French). Comm Partial Differ. Equ. 30(7–9), 1107–1140 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brezis H., Gallouet T.: Nonlinear Schrdinger evolution equations. Nonlinear Anal. 4(4), 677–681 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kato T.: Nonstationary flows of viscous and ideal fluids in R 3. J. Funct. Anal. 9, 296–305 (1972)

    Article  MATH  Google Scholar 

  15. Kukavica I., Ziane M.: Navier–Stokes equations with regularity in one direction. J. Math. Phys. 48(6), 1–5 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-J. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XJ. Global existence of smooth solutions to the anisotropic hyperdissipative Navier−Stokes equations. Z. Angew. Math. Phys. 66, 389–398 (2015). https://doi.org/10.1007/s00033-014-0405-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-014-0405-x

Mathematics Subject Classification

Keywords

Navigation