Skip to main content
Log in

Horseshoes for the nearly symmetric heavy top

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We prove the existence of horseshoes in the nearly symmetric heavy top. This problem was previously addressed but treated inappropriately due to a singularity of the equations of motion. We introduce an (artificial) inclined plane to remove this singularity and use a Melnikov-type approach to show that there exist transverse homoclinic orbits to periodic orbits on four-dimensional level sets. The price we pay for removing the singularity is that the Hamiltonian system becomes a three-degree-of-freedom system with an additional first integral, unlike the two-degree-of-freedom formulation in the classical treatment. We therefore have to analyze three-dimensional stable and unstable manifolds of periodic orbits in a six-dimensional phase space. A new Melnikov-type technique is developed for this situation. Numerical evidence for the existence of transverse homoclinic orbits on a four-dimensional level set is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: Mathematical Methods of Classical Mechanics, 2nd ed. Springer, Berlin (1989)

    Book  Google Scholar 

  2. Audin M.: Spinning Tops: A Course on Integrable Systems. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  3. Champneys A.R., Lord G.J.: Computation of homoclinic solutions to periodic orbits in a reduced water-wave problem. Phys. D 102, 232–269 (1997)

    Article  MathSciNet  Google Scholar 

  4. Doedel, E., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B., Wang, X.: AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont), Concordia University, 1997 (an upgraded version is available at http://cmvl.cs.concordia.ca/auto/)

  5. Dovbysh, S.A.: Splitting of separatrices of unstable uniform rotations and nonintegrability of a perturbed Lagrange problem, Vestnik Moskov. Univ. Ser. I Mat. Mekh., no. 3, 70–77 (in Russian) (1990)

  6. Fenichel N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goldstein H.: Classical Mechanics, 2nd ed. Addison-Wesley, Reading (1980)

    MATH  Google Scholar 

  8. Guckenheimer J., Holmes P.J.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  9. Haller G.: Chaos Near Resonance. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  10. Holmes P.J., Marsden J.E.: Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom. Commun. Math. Phys. 82, 523–544 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Holmes P.J., Marsden J.E.: Melnikov’s method and Arnol’d diffusion for perturbations of integrable Hamiltonian systems. J. Math. Phys. 23, 669–675 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Holmes P.J., Marsden J.E.: Horseshoes and Arnold diffusion for Hamiltonian systems on Lie groups. Indiana Univ. Math. J. 32, 273–309 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Homburg A.J., Knobloch J.: Multiple homoclinic orbits in conservative and reversible systems. Trans. Am. Math. Soc. 358, 1715–1740 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Landau L.D., Lifshitz E.M.: Mechanics, Course of Theoretical Physics vol. 1. Pergamon Press, NY (1960)

    Google Scholar 

  15. Lin X.-B.: Using Melnikov’s method to solve Šilnikov’s problems. Proc. R. Soc. Edinb. Sect. A 116, 295–325 (1990)

    Article  MATH  Google Scholar 

  16. Maciejewski A.J., Przybylska M.: Differential Galois approach to the non-integrability of the heavy top problem. Ann. Fac. Sci. Toulouse Math. 14, 123–160 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Meiss, J.D.: Differential Dynamical Systems. SIAM, Philadelphia (2007)

  18. Melnikov V.K.: On the stability of a center for time-periodic perturbations. Trans. Moscow Math. Soc. 12, 1–57 (1963)

    Google Scholar 

  19. Mielke A., Holmes P.: Spatially complex equilibria of buckled rods. Arch. Ration. Mech. Anal. 101, 319–348 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Moser J.: Stable and Random Motions in Dynamical Systems. Ann. Math. Stud. No. 77. Princeton University Press, Princeton (1973)

    Google Scholar 

  21. Sakajo T., Yagasaki K.: Chaotic motion of the N-vortex problem on a sphere: I. Saddle-centers in two-degree-of-freedom Hamiltonians. J. Nonlinear Sci. 18, 485–525 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Smale S.: Differentiable dynamical systems, Bull. Am. Math. Soc. 73, 747–817 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vanderbauwhede A., Fiedler B.: Homoclinic period blow-up in reversible and conservative systems. Z. Angew. Math. Phys. 43, 292–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. van der Heijden G.H.M., Yagasaki K.: Nonintegrability of an extensible conducting rod in a uniform magnetic field. J. Phys. A 44, 495101 (2011)

    Article  MathSciNet  Google Scholar 

  25. Whittaker E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th ed. Cambridge University Press, Cambridge (1937)

    Google Scholar 

  26. Wiggins S.: Global Bifurcations and Chaos: Analytical Methods. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  27. Wiggins S.: Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  28. Yagasaki K.: Horseshoes in two-degree-of-freedom Hamiltonian systems with saddle-centers. Arch. Rational Mech. Anal. 154, 275–296 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yagasaki K.: Homoclinic and heteroclinic orbits to invariant tori in multi-degree-of-freedom Hamiltonian systems with saddle-centres. Nonlinearity 18, 1331–1350 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ziglin S.L.: Splitting of separatrices, branching of solutions and nonexistence of an integral in the dynamics of a solid body. Trans. Moscow Math. Soc. 41, 283–298 (1982)

    Google Scholar 

  31. Ziglin S.L.: Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics, I. Funct. Anal. Appl. 16, 181–189 (1983)

    Article  MATH  Google Scholar 

  32. Ziglin S.L.: Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics, II. Funct. Anal. Appl. 17, 6–17 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ziglin S.L.: The absence of an additional real-analytic first integral in some problems of dynamics. Funct. Anal. Appl. 31, 3–9 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyuki Yagasaki.

Additional information

KY was partially supported by the Japan Society for the Promotion of Sciences through Grant-in-Aid for Scientific Research (C) Nos. 21540124 and 22540180.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Heijden, G.H.M., Yagasaki, K. Horseshoes for the nearly symmetric heavy top. Z. Angew. Math. Phys. 65, 221–240 (2014). https://doi.org/10.1007/s00033-013-0319-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0319-z

Mathematics Subject Classification (2010)

Keywords

Navigation