Skip to main content
Log in

A Fractional Framework for Perimeters and Phase Transitions

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We review some recent results on minimisers of a non-local perimeter functional, in connection with some phase coexistence models whose diffusion term is given by the fractional Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio L., De Philippis G., Martinazzi L.: Γ-convergence of nonlocal perimeter functionals. Manuscripta Math. 134, 377–403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Barrios, A. Figalli and E. Valdinoci, Bootstrap regularity for integrodifferential operators and its application to nonlocal minimal surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) http://arxiv.org/abs/1202.4606v1

  3. Cabré X., Cinti E.: Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian. Discrete Contin. Dyn. Syst. 28(3), 1179–1206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. X. Cabré, E. Cinti, Fractional diffusion equations: energy estimates and 1-D symmetry in dimension 3, preprint.

  5. X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians II: existence, uniqueness, and qualitative properties of solutions, preprint arxiv.org/abs/1111.0796

  6. Cabré X., Solà-Morales J.: Layer solutions in a half-space for boundary reactions. Comm. Pure Appl. Math. 58(12), 1678–1732 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli L., Córdoba A.: Uniform convergence of a singular perturbation problem. Comm. Pure Appl. Math. 48, 1–12 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli L., Roquejoffre J.-M., Savin O.: Non-local minimal surfaces. Comm. Pure Appl. Math. 63, 1111–1144 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Caffarelli L., Valdinoci E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differential Equations 41(1-2), 203–240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Caffarelli and E. Valdinoci, Regularity properties of nonlocal minimal surfaces via limiting arguments, preprint http://arxiv.org/abs/1105.1158

  11. E. De Giorgi, Convergence problems for functionals and operators, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis, Bologna, Pitagora (1979).

  12. del Pino M., Kowalczyk M., Wei J.: A counterexample to a conjecture by De Giorgi in large dimensions. C. R. Acad. Sci. Paris, Ser. I 346, 1261–1266 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Di Nezza E., Palatucci G., Valdinoci E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Dipierro, A. Figalli, G. Palatucci and E. Valdinoci, Asymptotics of the s-perimeter as \({s \searrow 0}\) , Discrete Contin. Dyn. Syst. 33 (7) (2013) 2777–2790.

  15. A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, Recent progress on reaction-diffusion systems and viscosity solutions, World Sci. Publ., Hackensack, NJ (2009).

  16. Imbert C.: Level set approach for fractional mean curvature flows. Interfaces Free Bound. 11, 153–176 (2009)

    Article  MathSciNet  Google Scholar 

  17. Mazya V. , Shaposhnikova T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195, 230–238 (2002)

    Article  MathSciNet  Google Scholar 

  18. Modica L.: The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98(2), 123–142 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Palatucci, O. Savin and E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm, Ann. Mat. Pura Appl. (4), DOI:10.1007/s10231-011-0243-9 http://dx.doi.org/10.1007/s10231-011-0243-9

  20. O. Savin and E. Valdinoci, Density estimates for a variational model driven by the Gagliardo norm, preprint http://arxiv.org/abs/1007.2114

  21. Savin O., Valdinoci E.: Density estimates for a nonlocal variational model via the Sobolev inequality. SIAM J. Math. Analysis 43(6), 2675–2687 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Savin O., Valdinoci E.: Γ-convergence for nonlocal phase transitions. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(4), 479–500 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. O. Savin and E. Valdinoci, Regularity of nonlocal minimal cones in dimension 2, Calc. Var. Partial Differential Equations, DOI:10.1007/s00526-012-0539-7 http://www.springerlink.com/content/467n313161531332

  24. O. Savin and E. Valdinoci, Some monotonicity results for minimizers in the calculus of variations, J. Funct. Anal.

  25. L. Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator, PhD thesis, University of Texas at Austin (2005) http://math.uchicago.edu/luis/preprints/luisdissreadable.pdf

  26. Sire Y., Valdinoci E.: Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result. J. Funct. Anal. 256(6), 1842–1864 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Valdinoci.

Additional information

I am greatly indebted to Begoña Barrios, Luis Caffarelli, Serena Dipierro, Alessio Figalli, Giampiero Palatucci, Ovidiu Savin and Yannick Sire: the results outlined in this note are the fruit of the very pleasant and stimulating collaboration with them and I profited enormously from the possibility of having them as mentors and coworkers. This work is supported by the ERC project \({\epsilon}\) (Elliptic Pde’s and Symmetry of Interfaces and Layers for Odd Nonlinearities) and the FIRB project A&B (Analysis and Beyond).

Lecture held in the Seminario Matematico e Fisico on Novemer 5, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdinoci, E. A Fractional Framework for Perimeters and Phase Transitions. Milan J. Math. 81, 1–23 (2013). https://doi.org/10.1007/s00032-013-0199-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-013-0199-x

Keywords

Navigation