Skip to main content
Log in

ALGEBRAIC ANALYSIS OF SCALAR GENERALIZED VERMA MODULES OF HEISENBERG PARABOLIC TYPE I: A n -SERIES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

In the present article, we combine some techniques in harmonic analysis together with the geometric approach given by modules over sheaves of rings of twisted differential operators (\( \mathcal{D} \) -modules), and reformulate the composition series and branching problems for objects in the Bernstein–Gelfand–Gelfand parabolic category \( {\mathcal{O}}^{\mathfrak{p}} \) geometrically realized on certain orbits in the generalized flag manifolds. The general framework is then applied to the scalar generalized Verma modules supported on the closed Schubert cell of the generalized flag manifold G / P for G = SL(n + 2, ℂ) and P the Heisenberg parabolic subgroup; and algebraic analysis gives a complete classification of \( {\mathfrak{g}}_r^{\prime } \) -singular vectors for all \( {\mathfrak{g}}_r^{\prime }=\mathfrak{s}\mathfrak{l}\left(n-r+2,\mathbb{C}\right)\kern1em \subset \mathfrak{g}=\mathfrak{s}\mathfrak{l}\left(n+2,\mathbb{C}\right),n-r>21 \). A consequence of our results is that we classify SL(n − r + 2, ) -covariant differential operators acting on homogeneous line bundles over the complexification of the odd-dimensional CR-sphere S 2n+1 and valued in homogeneous vector bundles over the complexification of the CR-subspheres S 2(n-r)+1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Čap, J. Slovák, Parabolic Geometries I: Background and General Theory, Mathematical Surveys and Monographs, Vol. 154, American Mathematical Society, Providence, 2009.

  2. L. Barchini, A. C. Kable, R. Zierau, Conformally invariant systems of differential equations and prehomogeneous vector spaces of Heisenberg parabolic type, Publ. Res. Inst. Math. Sci. 44 (2008), no. 3, 749–835.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. A. Beilinson, J. N. Bernstein, Localisation de \( \mathfrak{g}- modules \), C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15–18.

  4. И. H. Бepнштeйн, И. M. Гeльфaнд, C. И. Гeльфaнд, Cтpуктуpa пpeдcтaвлeний, пopoждённыx вeктopaми cтapшeгo вeca, Функц aнaлиз и eгo пpил. 5 (1971), vyp. 1, 1–9. Engl. transl.: J. N. Bernstein, I. M. Gelfand, S. I. Gelfand, Structure of representations generated by vectors of highest weight, Functional Anal. Appl. 5 (1971), no. 1, 1–8.

  5. T. P. Branson, L. Fontana, C. Morpurgo, Moser–Trudinger and Beckner–Onofris inequalities on the CR sphere, Ann. of Math. (2) 177 (2013), no. 1, 1–52.

  6. D. H. Collingwood, B. Shelton, A duality theorem for extensions of induced highest weight modules, Pacific J. Math. 146 (1990), no. 2, 227–237.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. L. Fefferman, Monge–Ampere equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2) 103 (1976), no. 3, 395–416.

  8. E. Fischer, Über die Differentiationsprozesse der Algebra, J. Reine Angew. Math. 148 (1918), 1–78.

    MathSciNet  MATH  Google Scholar 

  9. A. Gyoja, Highest weight modules and b-functions of semi-invariants, Publ. Res. Inst. Math. Sci. 30 (1994), no. 3, 353–400.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. F. Harvey, H. Blaine Lawson, Jr., On boundaries of complex analytic varieties, I, Ann. of Math. (2) 102 (1975), no. 2, 223–290.

  11. R. Hotta, K. Takeuchi, T. Tanisaki, \( \mathcal{D} \) -Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics, Vol. 236, Birkhäuser, Boston, 2008.

  12. J. E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category \( \mathcal{O} \), Graduate Studies in Mathematics, Vol. 94, American Mathematical Society, Providence, 2008.

  13. A. Juhl, Families of Conformally Covariant Differential Operators, Q-Curvature and Holography, Progress in Mathematics, Vol. 275, Birkhäuser, Basel, 2009.

  14. M. Kashiwara, Representation theory and \( \mathcal{D} \) -modules on flag varieties, Astérisque 173–174 (1989), 55–109.

  15. M. Kashiwara, \( \mathcal{D} \) -modules and Microlocal Calculus, Translations of Mathematical Monographs, Vol. 217, American Mathematical Society, Providence, 2003.

  16. T. Kobayashi, Discrete decomposability of the restriction of \( {A}_{\mathfrak{q}}\left(\leftthreetimes \right) \) with respect to reductive subgroups and its applications, Invent. Math. 117 (1994), no. 1, 181–205.

  17. T. Kobayashi, Discrete decomposability of the restriction of \( {A}_{\mathfrak{q}}\left(\leftthreetimes \right) \) with respect to reductive subgroups, II: Micro-local analysis and asymptotic K-support, Ann. of Math. (2) 147 (1998), no. 2, 709–729.

  18. T. Kobayashi, Discrete decomposability of the restriction of \( {A}_{\mathfrak{q}}\left(\leftthreetimes \right) \) with respect to reductive subgroups, III: Restriction of Harish-Chandra modules and associated varieties, Invent. Math. 131 (1998), no. 2, 229–256.

  19. T. Kobayashi, Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs, in: Representation Theory and Automorphic Forms, Progress in Mathematics, Vol. 255, Birkhäuser, Boston, 2007, pp. 45–109.

  20. T. Kobayashi, Restrictions of generalized Verma modules to symmetric pairs, Trans-formation Groups 17 (2012), no. 2, 523–546.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Kobayashi, B. Ørsted, P. Somberg, V. Souček, Branching laws for Verma modules and applications in parabolic geometry, I, Adv. Math. 285 (2015), 1796–1852.

  22. T. Kobayashi, M. Pevzner, Differential symmetry breaking operators: I. General theory and F-method, Sel. Math. New Ser. 22 (2016), no. 2, 801–845, doi:10.1007/s00029-15-0207-9; Differential symmetry breaking operators: II. Rankin–Cohen operators for symmetric pairs, Sel. Math. New Ser. 22 (2016), no. 2, 847–911, doi:10.1007/s00029-015-0208-8.

  23. J. Lepowsky, A generalization of the Bernstein–Gelfand–Gelfand resolution, J. Algebra 49 (1977), no. 2, 496–511.

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Tanaka, A Differential Geometric Study on Strongly Pseudoconvex Manifolds, Lectures in Mathematics, Kinokuniya Book-Store, Tokyo, 1975.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. SOMBERG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KŘIŽKA, L., SOMBERG, P. ALGEBRAIC ANALYSIS OF SCALAR GENERALIZED VERMA MODULES OF HEISENBERG PARABOLIC TYPE I: A n -SERIES. Transformation Groups 22, 403–451 (2017). https://doi.org/10.1007/s00031-016-9414-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-016-9414-5

Navigation